Water Year 2018 # Juvenile *Oncorhynchus mykiss* Rearing Monitoring in the Guadalupe River Watershed Prepared by: Santa Clara Valley Water District Environmental Mitigation and Monitoring Unit March 26, 2019 # **Executive Summary** The Santa Clara Valley Water District (SCVWD) has been conducting juvenile steelhead (*Oncorhynchus mykiss, O. mykiss*) monitoring since 2004 as part of the downtown Guadalupe River Project. The monitoring was concluded in 2013, but SCVWD recommended the continuation and expansion of monitoring efforts to better understand *O. mykiss* numbers and distribution in the Guadalupe Watershed. In 2013 the Adaptive Management Team (AMT) approved the recommendation (No. 136), and in 2018 the National Marine Fisheries Service and California Department of Fish and Wildlife authorized the expansion of the monitoring under Section 10(a)1(A) Scientific Collecting Permit # 16417-2R and California Department of Fish and Wildlife Scientific Collecting Permit # 11325. In Water Year (WY) 2018 monitoring was conducted at 23 stations in the Guadalupe Watershed, including stations in the Guadalupe River, Guadalupe Creek, Los Gatos Creek, Calero Creek, and Alamitos Creek. Multipass depletion backpack electrofishing was conducted at each station to determine the presence of *O. mykiss* as well as the composition of other fish species in the Guadalupe Watershed. Appropriately sized *O. mykiss* were tagged with a Passive Integrated Transponder (PIT) tags to study their movement within the Guadalupe Watershed. Juvenile *O. mykiss* were present in Alamitos, Calero, and Guadalupe Creek during WY 2018, with 32 (0.2 *O. mykiss*/meter), 17 (0.14 *O. mykiss*/meter), and 66 (0.28 *O. mykiss*/meter) individuals captured in each creek respectively. No *O. mykiss* were detected in Guadalupe River or Los Gatos Creek. Based on the size range of fish collected, it can be deduced that production and successful summer rearing occurred and multiple age classes were present. Seven species of non-native fish were observed amongst the five stations sampled, representing less than 4% of the total number of fish observed in WY 2018. The Guadalupe River and Los Gatos Creek had the highest percentage of non-natives (9.8% and 9.1% respectively). Of the seven species of non-natives, only the largemouth bass is considered a potential predator of *O. mykiss*. This juvenile rearing monitoring is part of a continuing effort to better understand *O. mykiss* distribution and abundance in the Guadalupe Watershed. This report contains the results and analysis of the juvenile rearing monitoring conducted from WY 2004 – 2018. ## **Contents** | Exe | ecutive Summary | i | |-----|------------------------|-----| | Со | ntents | ii | | Tak | bles | iii | | Fig | jures | v | | 1. | Introduction | 1 | | 2. | Methods | 2 | | 2 | 2.1 Station Selection | 2 | | | Guadalupe River | 3 | | | Guadalupe Creek | 5 | | | Los Gatos Creek | 7 | | | Alamitos Creek | 9 | | | Calero Creek | 11 | | 2 | 2.2 Sampling Methods | 13 | | | Habitat Typing | 13 | | | Electrofishing | 15 | | | Fish Processing | 15 | | 2 | 2.3 Data Analysis | 16 | | 3. | Results and Discussion | 17 | | 3 | 3.1 Guadalupe River | 17 | | | GR001 | 17 | | | GR002 | 20 | | | GR003 | 22 | | | GR004 | 25 | | | GR005 | 28 | | | GR006 | 30 | | | Discussion | 32 | | 3 | 3.2 Guadalupe Creek | 34 | | | GC001 | 34 | | | GC002 | 36 | | | GC003 | 39 | | | GC004 | 42 | | | GC005 | 45 | | GC006 | 46 | |--|----| | Discussion | 48 | | 3.3 Los Gatos Creek | 51 | | LG001 | 51 | | LG002 | 53 | | LG003 | 54 | | LG004 | 56 | | Discussion | 58 | | 3.4 Alamitos Creek | 58 | | AC001 | 59 | | AC002 | 60 | | AC003 | 62 | | AC004 | 64 | | Discussion | 66 | | 3.5 Calero Creek | 69 | | CC001 | 69 | | CC002 | 71 | | CC003 | 72 | | Discussion | 74 | | 4. Conclusion | 76 | | | | | Tables | | | Table 1: Habitat type classifications (Ode 2007) | 14 | | Table 2: Ocular estimate scale (Ode 2007). | | | Table 3: Substrate classes | | | Table 4: Guadalupe River station GR001 water quality data and ocular estimates of habitat | | | complexity. | 18 | | Table 5: Number captured and Population estimate at Station GR001 on the Guadalupe River. | | | Table 5. Number captured and r opulation estimate at otation Groot on the Guadalape River. | | | Table 6: Guadalupe River station GR002 water quality data and ocular estimates of habitat | 1) | | complexity. | 21 | | Table 7: Number captured and population estimate at Station GR002 on the Guadalupe River. | |---| | 22 | | Table 8: Guadalupe River station GR003 water quality data and ocular estimates of habitat | | complexity | | Table 9: Number captured and population estimates at Station GR003 on the Guadalupe River. | | 24 | | Table 10: Guadalupe River station GR004 water quality data and ocular estimates of habitat complexity | | Table 11: Number captured and population estimates at Station GR004 on the Guadalupe | | River | | Table 12: Guadalupe River station GR005 water quality data and ocular estimates of habitat | | complexity | | Table 13: Number captured and population estimates at Station GR005 on the Guadalupe | | River30 | | Table 14: Guadalupe River station GR006 water quality data and ocular estimates of habitat | | complexity | | Table 15: Number captured and population estimates at Station GR006 on the Guadalupe | | River | | Table 16: Station GC001 water quality data and ocular estimates of habitat complexity35 | | Table 17: Number captured and population estimates at Station GC001 on Guadalupe Creek. 35 | | Table 18: Station GC002 water quality data and ocular estimates of habitat complexity37 | | Table 19: Number captured and population at Station GC002 on Guadalupe Creek38 | | Table 20: Station GC003 water quality data and ocular estimates of habitat complexity40 | | Table 21: Numbered captured population estimates at Station GC003 on the Guadalupe Creek. | | 41 | | Table 22: Station GC004 water quality data and ocular estimates of habitat complexity43 | | Table 23: Number captured and population estimates at Station GC004 on the Guadalupe | | Creek | | Table 24: Station GC005 water quality data and ocular estimates of habitat complexity45 | | Table 25: Number captured and population estimates at Station GC005 on Guadalupe Creek. 46 | | Table 26: Station GC006 water quality data and ocular estimates of habitat complexity47 | | Table 27: Number captured and Population estimate at Station GC006 on the Guadalupe | | Creek 48 | | Table 28: Station LG001 water quality data and ocular estimates of habitat complexity52 | 2 | |---|---| | Table 29: Number captured and population estimates at Station LG001 on Los Gatos Creek5 | 3 | | Table 30: Station LG002 water quality data and ocular estimates of habitat complexity54 | 4 | | Table 31: Number captured and population estimate at Station LG002 on Los Gatos Creek54 | 4 | | Table 32: Station LG003 water quality data and ocular estimates of habitat complexity5 | 5 | | Table 33: Number captured and population estimates at Station LG003 on Los Gatos Creek50 | 6 | | Table 34: Station LG004 water quality data and ocular estimates of habitat complexity5 | 7 | | Table 35: Number captured and population estimates at Station LG004 on Los Gatos Creek5 | 7 | | Table 36: Station AC001 water quality data and ocular estimates of habitat complexity60 | 0 | | Table 37: Number captured and population at Station AC001 on Alamitos Creek60 | 0 | | Table 38: Station AC002 water quality data and ocular estimates of habitat complexity6 | 1 | | Table 39: Number captured and population estimates at Station AC002 on Alamitos Creek 62 | 2 | | Table 40: Station AC003 water quality data and ocular estimates of habitat complexity6 | 3 | | Table 41: Number captured and population estimates at Station AC003 on Alamitos Creek 64 | 4 | | Table 42: Station AC004 water quality data and ocular estimates of habitat complexity69 | 5 | | Table 43: Number captured and population estimates at Station AC004 on Alamitos Creek 60 | 6 | | Table 44: Station CC001 water quality data and ocular estimates of habitat complexity70 | 0 | | Table 45: Number captured and population estimate at Station CC001 on Calero Creek70 | 0 | | Table 46: Station CC002 water quality data and ocular estimates of habitat complexity7 | 1 | | Table 47: Number captured and population estimates at Station CC002 on Calero Creek7 | 2 | | Table 48: Station CC003 water quality data and ocular estimates of habitat complexity73 | 3 | | Table 49: Number captured and population estimates at Station CC002 on Calero Creek73 | 3 | | Table 50: 2018 average density and length of O. mykiss captured within Guadalupe, Alamitos, | | | and Calero Creeks7 | 7 | | Table 51: Total capture of fish per sub-watershed and percentage of total capture that was non- | | | native species79 | 9 | | Figures | | | Figure 1: Guadalupe River juvenile rearing monitoring stations | 4 | | Figure 2: Guadalupe Creek juvenile rearing stations. | | | Figure 3: Los Gatos Creek juvenile rearing stations | 8 | | Figure 4: Alamitos Creek juvenile rearing sampling stations10 | 0 | | Figure 5: Calero Creek juvenile rearing sampling stations12 | |---| | Figure 6: Photos of station GR001, looking upstream (left) and looking downstream (right)18 | | Figure 7: Station GR001 (previously Station 3) standardized O. mykiss capture 2004-2018 20 | | Figure 8: Photos of station GR002, looking upstream (left) and looking downstream (right)21 | | Figure 9: Station GR002 (previously Station 8) standardized O. mykiss capture 2004-201822 | | Figure 10: Photos of station GR003, looking upstream
(left) and looking downstream (right)23 | | Figure 11: Station GR003 (previously Station 9) standardized O. mykiss capture 2004-201825 | | Figure 12: Photos of station GR004, looking upstream (left) and looking downstream (right) 26 | | Figure 13: Station GR004 (previously Station 8) standardized O. mykiss capture 2004-201827 | | Figure 14: Photos of station GR005, looking upstream (left) and looking downstream (right) 28 | | Figure 15: Hatchery stray Chinook salmon captured in GR00529 | | Figure 16: Photos of station GR006, looking upstream (left) and looking downstream (right) 31 | | Figure 17: Photos of station GC001, looking upstream (left) and looking downstream (right) 34 | | Figure 18: Station GC001 (previously Station 14) standardized O. mykiss capture 2004-2018. 36 | | Figure 19: Photos of station GC002, looking upstream (left) and looking downstream (right) 37 | | Figure 20: Station GC002 (previously Station 16) standardized O. mykiss capture 2004-2018. 39 | | Figure 21: Photos of station GC003, looking upstream (left) and looking downstream (right) 40 | | Figure 22: Station GC003 (previously Station 18) standardized O. mykiss capture 2004-2018. 42 | | Figure 23: Photos of station GC004, looking upstream (left) and looking downstream (right) 43 | | Figure 24: Station GC004 (previously Station 20) standardized O. mykiss capture 2004-2018. 44 | | Figure 25: Photos of station GC005, looking upstream (left) and looking downstream (right) 45 | | Figure 26: Photos of station GC006, looking upstream (left) and looking downstream (right) 47 | | Figure 27: Guadalupe Creek O. mykiss length histogram. All measurements are in fork-length | | and binned in 10 mm increments49 | | Figure 28: 2018 O. mykiss catch per unit effort oriented up- to downstream on Guadalupe | | Creek | | Figure 29: Guadalupe Creek O. mykiss with minor blackspot disease. Melanin induced cysts are | | circled in red51 | | Figure 30: Photos of station LG001, looking upstream (left) and looking downstream (right)52 | | Figure 31: Photos of station LG002, looking upstream (left) and looking downstream (right) 53 | | Figure 32: Photos of station LG003, looking upstream (left) and looking downstream (right)55 | | Figure 33: Photos of station LG004, looking upstream (left) and looking downstream (right)57 | | | | Figure 34: Photos of station AC001, looking upstream (left) and looking downstream (right)59 | |--| | Figure 35: Photos of station AC002, looking upstream (left) and looking downstream (right)61 | | Figure 36: Photos of station AC003, looking upstream (left) and looking downstream (right)63 | | Figure 37: Photos of station AC004, looking upstream (left) and looking downstream (right)65 | | Figure 38: Alamitos Creek O. mykiss with visible signs of blackspot disease (left being severe | | and right being minor)68 | | Figure 39: Alamitos Creek O. mykiss length histogram. All measurements are in fork-length and | | binned in 10 mm increments67 | | Figure 40: O. mykiss catch per unit effort oriented up- to downstream on Alamitos Creek 68 | | Figure 41: Photos of station CC001, looking upstream (left) and looking downstream (right) 69 | | Figure 42: Photos of station CC002, looking upstream (left) and looking downstream (right)71 | | Figure 43: Photos of station CC001, looking upstream (left) and looking downstream (right)73 | | Figure 44: Calero Creek O. mykiss length histogram. All measurements are in fork-length and | | binned in 10 mm increments75 | | Figure 45: O. mykiss catch per unit effort oriented up- to downstream on Calero Creek75 | | Figure 46: O. mykiss captured on Calero Creek76 | | Figure 47: O. mykiss size distribution (fork length) for Guadalupe, Calero, and Alamitos Creek | | sub-watersheds78 | ## 1. Introduction The United States Army Corp of Engineers in partnership with the Santa Clara Valley Water District (SCVWD) constructed both the Guadalupe River Project (Downtown Project) and Upper Guadalupe River Project (UGRP). These projects together extend from approximately Norman Y. Mineta San Jose International Airport to Blossom Hill Road to protect downtown San Jose from Guadalupe River flooding. To offset the impacts of constructing the Downtown Project, the Guadalupe River Project Mitigation and Monitoring Plan (Downtown Project MMP) specified that a variety of mitigation be undertaken, including restoration of Guadalupe Creek from approximately Almaden Expressway to Masson Dam (Corps 2001a). The Downtown Project MMP also described the monitoring methods and measurable objectives for determining the success of mitigation. This included 10 years of monitoring for juvenile rearing of Central California Coast Steelhead (Oncorhynchus mykiss; O. mykiss for the remainder of the document) at 12 stations in the mainstem of the Guadalupe River and eight stations within Guadalupe Creek to demonstrate whether the associated measurable objective was being met: "The Guadalupe River must continue to support juvenile rearing at a level that is consistent with pre-project conditions and environmental conditions not affected by the Guadalupe River Project." In water year (WY) 2018, SCVWD expanded the juvenile rearing monitoring to stations in Los Gatos Creek, Alamitos Creek, and Calero Creek to improve understanding of juvenile O. mykiss distribution and densities, collect genetic information, and implement an O. mykiss tracking study using Passive Integrated Transponders (PIT). SCVWD conducted the required juvenile rearing monitoring from WY 2004 to 2013, and the measurable objective was met in each year. Instead of ending the monitoring, SCVWD recommended continuing and expanding it to better understand *O. mykiss* numbers and distribution throughout the Guadalupe River watershed. In WY 2013, the Downtown Project Adaptive Management Team (Guadalupe AMT) approved the recommendation (No. 136) to continue juvenile rearing monitoring at five of the previous monitoring stations on the Guadalupe River and expand the monitoring to 15 stations elsewhere in the watershed. However, the Downtown Project permits did not authorize juvenile rearing monitoring at additional stations. From WY 2014 to WY 2017 juvenile rearing monitoring continued at a subsample of five of the original permitted stations (as flow conditions allowed) while the permits for monitoring at additional stations were acquired. Ultimately, additional monitoring in the Guadalupe River watershed was authorized under National Marine Fisheries Service (NMFS) Section 10(a)1(A) scientific collecting permit number 16417-2R and California Department of Fish and Wildlife (CDFW) Scientific Collecting Permit #11325 for the SCVWD's Fisheries and Aquatic Habitat Collaborative Effort (FAHCE) Adaptive Fishery Management Baseline Data Collection Project. These permits authorized annual sampling in the Guadalupe River, Coyote Creek, and Stevens Creek, but the Guadalupe River was the only watershed with a defined sampling strategy in place in time for monitoring in WY 2018. To date, juvenile rearing monitoring results have been reported to the Guadalupe AMT in the annual Mitigation Monitoring Report (MMR) for the Guadalupe River Projects. Beginning in WY 2018, monitoring results will be reported in a stand-alone document to facilitate distribution to and review by FAHCE stakeholders as well as the Guadalupe AMT. ## 2. Methods #### 2.1 Station Selection A total of 23 stations within the Guadalupe River watershed were sampled between October 16, 2018 and November 6, 2018. To provide continuity from the previous monitoring on Guadalupe River and Guadalupe Creek and maintain a long-term dataset, WY 2018 sampling occurred at a subset of locations from WY 2004-2017 monitoring. In addition, new sampling stations were identified to expand the survey area using stratified random selection, and each sampling station, whether previously sampled or new, was given a unique identification number. Private lands were removed from the random selection process. Only areas of SCVWD ownership or easement, or lands owned by other government agencies, were included to ensure sampling reaches could be easily accessed for multiple years to come. The rationale for station selection in each sub-watershed is described further below. ## Guadalupe River From 2004-2017, 12 stations were sampled on the mainstem of the Guadalupe River. These stations were distributed between Airport Parkway and the Highway 280 overcrossing near Grant Street. These stations were spaced approximately 450 m apart. The AMT recommendation for continuing juvenile rearing monitoring in the Guadalupe River watershed specified that five of the original 20 monitoring stations would continue to be sampled. The permits issued for conducting this work only allow a maximum of six stations to be sampled in each sub-watershed, so it was determined that for better spatial distribution throughout the entire Guadalupe River that the number of previously sampled stations be reduced to four. This allowed two additional stations be sampled in the upper portions of Guadalupe River up to the Alamitos Drop Structure, in areas not previously sampled. Stations 3, 6, 9, and 12 were originally selected to provide equal distribution throughout the previously sampled reach (Guadalupe mainstem from Airport Parkway to Highway 280); however, stations 6, 5, and 7 were unsafe to sample due to homeless activity in the area, so station 8 was selected. To randomly select the two remaining monitoring stations, the 10 km of mainstem Guadalupe River upstream of the original Downtown Project monitoring reach was broken into 10 1-km reaches. Two of the ten reaches were randomly selected using a random number generator. Those reaches were broken into 25 40-m stations, and a station was randomly selected using a random number generator in each reach. The previously sampled (WY 2004-2013),
continuously sampled (WY 2004-2018), and new sampling stations (WY 2018) with unique station identifications numbers are mapped in Figure 1. Figure 1: Guadalupe River juvenile rearing monitoring stations. ## Guadalupe Creek From 2004-2017, eight stations were sampled on Guadalupe Creek. These stations were distributed between Almaden Expressway and Stream Gage 43 (near the intersection of Shannon and Hicks Road). In previous reports these stations were numbers 13-20, a continuation of the Guadalupe River station numbers. In order to maintain a continuous dataset with the WY 2004-2017 monitoring, four of the previous sampling stations were selected for continued monitoring: Stations 14, 16, 18, and 20, which were respectively renamed as Stations GC001, GC002, GC003, and GC004. Two additional stations were selected on the remaining 4 km of Guadalupe Creek upstream of the area monitored for the Downtown Project to Guadalupe Reservoir. To randomly select the stations, the area was broken into four 1-km reaches. Two of the four reaches were randomly selected using a random number generator. Each 1-km reach was then broken into 25 40-m stations, and stations were randomly selected using a random number generator. The previously sampled, continuously sampled, and new sampling stations are mapped in Figure 2. Figure 2: Guadalupe Creek juvenile rearing stations. #### Los Gatos Creek WY 2018 was the first year juvenile rearing sampling occurred on Los Gatos Creek. Four stations were randomly selected to represent the approximately 9 km reach of Los Gatos Creek from the confluence with the Guadalupe River to the Camden Avenue Drop Structure, which is the upstream extent of anadromy. To randomly select the stations, the area was broken into nine 1-km reaches. Four of the nine reaches were randomly selected using a random number generator. Those four 1-km reaches were broken into 25 40-m stations, and each station was randomly selected using a random number generator. They were then assigned station identification numbers 1-4. The results of the station selection can be seen in Figure 3. Figure 3: Los Gatos Creek juvenile rearing stations. #### Alamitos Creek WY 2018 was the first year juvenile rearing sampling occurred on Alamitos Creek. Four stations were randomly selected to represent the approximately 11 km of Alamitos Creek from the confluence with Lake Almaden to the base of the dam at Almaden Reservoir. To randomly select the stations, the area was broken into 11 1-km reaches. Four of the 11 reaches were randomly selected using a random number generator. Those reaches were broken into 25 40-m stations, and each station was randomly selected using a random number generator. They were assigned station identification numbers 1-4. Selected stations are mapped in Figure 4. Figure 4: Alamitos Creek juvenile rearing sampling stations. #### Calero Creek WY 2018 was the first year juvenile rearing sampling occurred on Calero Creek. Three sampling stations were selected to represent the approximately 6 km portion of Calero Creek from the confluence with Alamitos Creek to the base of the dam at Calero Reservoir. To randomly select the stations, the area was broken into six 1-km reaches. Three of the six reaches were randomly selected using a random number generator. Those 1-km reaches were broken into 25 40-m stations, and each station was randomly selected using a random number generator. They were then assigned station identification numbers 1-3. Selected stations are mapped in Figure 5. Figure 5: Calero Creek juvenile rearing sampling stations. ## 2.2 Sampling Methods Each sampling station was 40-m except for one 35-m station on the Guadalupe River (GR002), that had to be shortened due to excessive water depth. Each station was set as close as possible to the randomly selected point to include at least two distinct habitat types, described below. Multi-pass depletion backpack electrofishing was used for juvenile rearing monitoring (Johnson et al. 2007). This method allowed for: consistency with previous juvenile rearing monitoring methods, population estimates to be extrapolated, and a variety of habitat types to be sampled. ## Habitat Typing Each sampling reach was 40-m in length. Each 40-m reach was habitat typed using the classifications described in Table 1. Each sampling station was selected to contain at least two distinct habitat types. Habitat typing followed Ode (2007) for habitat type descriptions (Table 1). Average wetted width and depth was estimated and the presence of any anthropogenic influences (bridge, dam, etc.) was noted. Prior to the start of sampling, ambient conditions (weather) were noted and water quality (dissolved oxygen, conductivity, and temperature) were collected at the downstream end of the sampling stations. Ocular estimates of percent cover of macrophytes/emergent vegetation, boulders, woody debris, undercut banks, overhanging vegetation, submerged roots (live and dead), and artificial structures were recorded for each sampling station (Table 2). Each habitat feature was ranked on a 0-4 point scale described below, with 0 being absent and 4 being a very heavy presence (Table 2). Primary and secondary substrate types were determined based upon ocular estimates (Table 3; Ode 2007). Table 1: Habitat type classifications (Ode 2007). | Habitat Type | Description | |--------------|---| | Cascades | Short, high gradient drop in streambed elevation often | | | accompanied by boulders and considerable turbulence. | | Falls | High gradient drop in elevation of the streambed associated | | | with an abrupt change in the bedrock. | | | Sections of stream with swiftly flowing water and | | Rapids | considerable surface turbulence. Rapids tend to have larger | | | substrate sizes than riffles. | | | Shallow sections where the water flows over coarse | | Riffles | streambed particles that create mild to moderate surface | | | turbulence. | | Step-Run | A series of runs that are separated by short riffles or flow | | Ctop Run | obstructions that cause discontinuous breaks in slope. | | | Sections without flow obstructions. The stream bed is | | Runs | typically even and the water flows faster than it does in a | | | pool. | | Glides | A section of stream with little or no turbulence, but faster | | Ciluos | velocity than pools. | | Pool | A reach of stream that is characterized by deep, low-velocity | | 1 301 | water and a smooth surface. | Table 2: Ocular estimate scale (Ode 2007). | Scale | 0 | 1 | 2 | 3 | 4 | |---------------------|--------|--------|----------|--------|------------| | Percent
Coverage | 0% | <10% | 10-40% | 40-75% | >75% | | Descriptor | Absent | Sparse | Moderate | Heavy | Very Heavy | Table 3: Substrate classes | Particle Size | Size Category | |---------------|--------------------------| | Boulder | > 250 mm | | Cobble | 65-250 mm | | Gravel | 2.0-65 mm | | Sand | <2.0 mm (gritty texture) | | Silt/Clay | Not gritty | | Bedrock | No individual particles | ### **Electrofishing** Block nets were installed at both the upstream and downstream ends of sampling reaches to block immigration into and emigration out of sampling reaches. Electrofishing commenced from down to upstream and worked laterally across the stream to ensure all portions of the wetted width were sampled. Smith-Root LR24 Backpack Electrofishing Units were used at all sampling stations. The LR24 quick set option was used to establish the initial power and waveform settings. The quick set output was verified with conductivity readings. Electrofishers were run using direct current, at a frequency of 30 HZ, duty cycle of 12%, and voltage that ranged between 150 and 190 volts. The electrofisher operator was flanked by two netters. Verbal communication and spatial awareness were used to ensure the entire width of the stream was covered. Triple-pass depletion elecotrofishing methods were deployed at all stations unless conditions did not allow (temperature constraints); these sites are pointed out in the Results and Discussion section. ## Fish Processing Fish were held in aerated dark-colored containers during processing. Length measurements were recorded to the nearest millimeter at the fork of the tail (fork-length). For each pass, up to 30 individuals of each species were measured, and all other individuals of that species were counted for a total number. Carbon dioxide (CO₂) was administered to *O. mykiss* using Alka-Seltzer Gold, in doses to induce light narcosis (1 tablet per 2.5 liters of stream water). *O. mykiss* were exposed to the anesthesia for no more than 5 minutes. *O. mykiss* were observed for listing, and upon listing were removed from the anesthetizing solution, weighed, measured, tail-clipped for a genetic sample, and PIT tagged if large enough (≥65 mm fork-length). Fin clips were taken for genetic analysis of all *O. mykiss* from the caudal fin. Clips were a 1-2 mm square. Medical grade scissors used to collect the clips were sterilized with an alcohol dilution with a final concentration of 60-80% isopropyl. Tissue samples were placed in sterile chromatography paper and placed in a labeled envelope denoting the field specimen number, species, stream, stream location, date, and fork-length. Tissues collected will be sent to the NMFS Southwest Fisheries Science Center. After exposure to the anesthesia and handling, fish were placed in an aerated dark-colored live well, then moved to an in-channel live car for recovery, and then released. All PIT tagging was conducted in accordance with the PIT Tag Marking Procedures Manual (CBFWA 1999) by staff trained in the procedure. *O. mykiss* of 65 mm in forklength or greater were tagged with a Passive Integrated Transponder (PIT) tag. Biomark single-use preloaded needles were used in the tagging process. *O. mykiss* greater than or equal to 65 mm fork-length received 12 mm half-duplex PIT tags. *O. mykiss*
larger than 150 mm fork-length received 23 mm tags. The permits allow for fish greater than 100 mm to be tagged with 23 mm tags, but to be conservative of the fishes' welfare, the minimum size was increased to 150 mm. PIT tags were scanned prior to insertion to verify they were viable. PIT tag numbers and associated biological data for each fish is included in Appendix A. ## 2.3 Data Analysis MicroFish 3.0 was used to calculate population estimates for each station using a maximum-likelihood iterative process; the associated standard errors and 95% confidence intervals (95% CI) are reported. This method uses the number of fish captured (n) and the difference in capture between electrofishing passes (i.e., depletion rate) to calculate an estimate of fish likely to have been present but not captured, thus generating a population estimate (N) for each station. Population estimates are restricted to the sampled areas and are only an index of the overall population. If the number of a particular species was too low (i.e., only one fish was captured) or all fish of a particular species were captured on the first pass, then maximum-likelihood population estimate could not be produced. If the lower confidence interval was less than the total catch it was set equal to total catch, as it is certain at least that many fish were present in the sampling reach. These calculations assume emigration and immigration were prevented by the erection of upstream and downstream block nets. It is assumed that shocking efficiency did not change between passes and that staff did not become more efficient using the equipment, nor did fish learn to avoid the electrical field between passes. To enable comparison of WY 2018 results with that of previous monitoring years, when different reach lengths may have been sampled, results were standardized to catch per meter. ## 3. Results and Discussion # 3.1 Guadalupe River Sampling occurred at six stations on the Guadalupe River on October 25, 29, and 31, 2018. Most sampling days were sunny and clear, but overcast conditions occurred on the 25th. Flows at the United States Geological Survey (USGS) gage upstream of Highway 101 (USGS #11169025), which provides the best representation of the juvenile rearing stations on the mainstem Guadalupe River, were approximately 28 cubic feet per second (cfs) during all sampling days. Stations located upstream of Los Gatos Creek (GR004, GR005, and GR006) will have flow lower than what occurs at Highway 101. #### GR001 This was the most downstream station sampled on the Guadalupe River and was one of the stations that had been sampled during the previous monitoring effort (when it was referred to as Site 3). This station is low gradient. A dense riparian corridor is present (Figure 6), but the channel is situated between two levees and urban development. The sampling station was 40-m in length with an average wetted width of 7.0 m and an average depth of 0.5 m. Two habitat types were present within the station: riffle and run. Each made up 50 % of the sampled area. The primary substrate was gravel with a secondary substrate of cobble. Water quality and habitat complexity at the time of sampling are summarized in Table 4. Figure 6: Photos of station GR001, looking upstream (left) and looking downstream (right). Table 4: Guadalupe River station GR001 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | |------------------------------------|----------|-----------------|-------------------|---------------------------|--------------------|--------------------------|--|--| | Conductivity (µS/cm) | Tem | | | ved Oxygen
(mg/l) | Turbidity
(NTU) | | | | | 881 | | 16.85 | 10.24 | | 18.9 | | | | | | На | abitat Com | plexity Scori | ing | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut
Banks | Overhanging
Vegetation | Roots | Artificial
Structures | | | | 3 | 0 | 2 | 2 | 2 | 2 | 0 | | | Fish captured and associated population estimates are summarized in Table 5. Four species of fish were captured: prickly sculpin (*Cottus asper*), riffle sculpin (*Cottus gulosus*), Sacramento sucker (*Catostomus occidantalis*) and green sunfish (*Lepomis* *cyanellus*). The most abundant species was prickly sculpin (n=18). No *O. mykiss* were captured. Table 5: Number captured and Population estimate at Station GR001 on the Guadalupe River. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-------|--------| | Prickly sculpin | Yes | 18 | 18 | 0.505 | 18-19 | | Riffle sculpin | Yes | 1 | - | - | - | | Sacramento sucker | Yes | 1 | - | - | - | | Green sunfish | No | 3 | 3 | 1.271 | 3-8 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station GR001 had low capture rates (23 total fish) and high rates of depletion per pass causing the population estimates to equal the number of fish captured. Of the four species captured, three are considered native. Station GR001 has 14 years of comparable data (2004-2017, except drought conditions precluded sampling at this station in 2014). Figure 7 shows the standardized capture of *O. mykiss* between 2004 and 2018. This station historically has low production of *O. mykiss*: of the 14 years of data, *O. mykiss* were only collected in four of the years, and the highest capture rate (in 2005) was 0.10 fish per meter. The average *O. mykiss* capture rate for this station is 0.02 fish per meter. These results indicate that *O. mykiss* occurrence in this downstream portion of the Guadalupe River is very low, inconsistent, and potentially that recolonization has not occurred after the severe drought conditions and channel drying that occurred in 2014-2016. Figure 7: Station GR001 (previously Station 3) standardized *O. mykiss* capture 2004-2018. #### GR002 This station was a continued sampling location previously referred to as Site 8. This station is bordered by the Guadalupe Park and Gardens and Highway 87. A dense riparian corridor is present, but there is a high level of anthropogenic disturbances (homeless, trash and debris). The sampling station was only 35 m in length (rather than 40 m) due to a pool at the downstream end and portions of the glide on the upstream end that were too deep to sample. The average wetted width was 6.5 m and the average depth was 0.5 m. Two habitat types were present within the station: riffle and glide (Figure 8). The riffle habitat was 71% of the reach; glide habitat was 29%. The primary substrate was large cobble with a secondary substrate of gravel. Water quality and habitat complexity at the time of sampling is summarized in Table 6. Figure 8: Photos of station GR002, looking upstream (left) and looking downstream (right). Table 6: Guadalupe River station GR002 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | |------------------------------------|----------|------------------|----------------------------|---------------------------|--------------------|--------------------------|--|--| | Conductivity
(μS/cm) | Tem | perature
(°C) | Dissolved Oxygen
(mg/l) | | Turbidity
(NTU) | | | | | 803 | 1 | 17.03 | 8.46 | | 22.5 | | | | | Habitat Complexity Scoring | | | | | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut
Banks | Overhanging
Vegetation | Roots | Artificial
Structures | | | | 2 | 3 | 1 | 2 | 3 | 3 | 0 | | | Prickly sculpin were the only species collected. Fish captured and associated population estimates are summarized in Table 7. No *O. mykiss* were captured at this sampling station. Station GR002 had low species diversity and the population estimate equaled the number of fish captured. No non-native fish were collected. Station GR002 has 12 years of comparable data (drought conditions in 2014-2015 and higher than normal flows in 2017 precluded sampling at this station in those years). Figure 9 shows the standardized capture of *O. mykiss* between 2004 and 2018. *O. mykiss* were collected in eight of the 12 years of data, and the highest fish per meter observed was in 2008 at 0.60 fish. The average *O. mykiss* per meter based on the 2004-2017 sampling period was 0.15 fish. Previous sampling results indicate that juvenile *O. mykiss* used this site in most years. Current results indicate that rearing in this portion of the Guadalupe River is extremely low or recolonization has not occurred after the drought conditions (including dry-backs) starting in 2014. Table 7: Number captured and population estimate at Station GR002 on the Guadalupe River. | Species | Native | n | N | SE | 95% CI | |-----------------|--------|----|----|-------|--------| | Prickly sculpin | Yes | 24 | 24 | 0.752 | 24-26 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Figure 9: Station GR002 (previously Station 8) standardized *O. mykiss* capture 2004-2018. #### GR003 This station was a continued sampling location previously referred to as Site 9. This station includes the St. John Street passage remediation project, which created riffle habitat and added large woody debris to remove a fish passage barrier. A portion of the station was under the St. John Street Bridge. The sampling station was 40 m in length with an average wetted width of 8.5 m and an average depth of 0.45 m. Two habitat types were present within the station: riffle and run (Figure 10). Each made up 50% of the station. The primary substrate was large cobble with a secondary substrate of boulders. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 8. Figure 10: Photos of station GR003, looking upstream (left) and looking downstream (right). Table 8: Guadalupe River station GR003 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | |
 | |---------------------------------------|----------|----------------------------|-------------------|---------------------------|-------|--------------------------|--| | Conductivity Temperature (μS/cm) (°C) | | Dissolved Oxygen
(mg/l) | | Turbidity
(NTU) | | | | | 613 | - | 17.00 | 10.23 | | 20.0 | | | | Habitat Complexity Scoring | | | | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut
Banks | Overhanging
Vegetation | Roots | Artificial
Structures | | | 2 | 4 | 1 | 0 | 1 | 1 | 4 | | Two sampling passes were conducted at this station; a third pass was not made due to increasing water temperature that had the potential to exceed the maximum water temperature allowed under the permitted sampling conditions (18.0°C). The four species of fish captured were: California roach (*Hesperoleucus symmetricus*), prickly sculpin, Sacramento sucker, and mosquitofish (*Gambusia affinis*). The most abundant species encountered was California roach (n=41). Fish captured and associated population estimates are summarized in Table 9. No *O. mykiss* were captured at this sampling station. Table 9: Number captured and population estimates at Station GR003 on the Guadalupe River. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|--------|--------| | California roach | Yes | 41 | 62 | 0 | 41-62 | | Prickly sculpin | Yes | 23 | 23 | 0.968 | 23-25 | | Sacramento sucker | Yes | 5 | 8 | 10.919 | 5-34 | | Mosquitofish | No | 1 | - | - | - | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station GR003 had the highest total capture of fish in the Guadalupe River (70 total fish). The maximum likelihood iterations indicate that the number of California roach and Sacramento sucker is likely higher than what was captured. Sampling conditions were difficult due to the width and the velocity in the riffle, and fish were likely missed during the passes. Station GR003 has 13 years of comparable data (drought conditions precluded sampling at this station in 2014-2015). Figure 11 shows the standardized capture of *O. mykiss* between 2004 and 2018. Of the 13 years of data, *O. mykiss* were collected in seven of the years sampled and the highest fish per meter observed was in 2012 at 0.43 fish. The average *O. mykiss* per meter based on the 2004-2017 dataset for this station is 0.12 fish. Previous sampling results indicate that juvenile *O. mykiss* used this site in most years. No *O. mykiss* have been captured since the dry-backs in 2015. Current results indicate that rearing in this portion of the Guadalupe River is extremely low, variable, or recolonization has not occurred after the drought conditions (including dry-backs) starting in 2014. Figure 11: Station GR003 (previously Station 9) standardized *O. mykiss* capture 2004-2018. #### GR004 This station was a continued sampling location. During the data collection effort between 2004 and 2017, this station was known as Site 12. This station falls within the Downtown Project's hardscaped reach. The channel bottom consists of cellular concrete mattress (CCM), with natural substrates deposited on the surface. The sampling station was 40 m in length with an average wetted width of 3.0 m and an average depth of 0.5 m. Habitat at the station was 90% run, 5% pool, and 5% riffle (Figure 12). The primary substrate was silt with a secondary substrate of boulders over the top of the CCM. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 10. Figure 12: Photos of station GR004, looking upstream (left) and looking downstream (right). Table 10: Guadalupe River station GR004 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |------------------------------------|---------------------|-----------------|----------------------------|---------------------------|--------------------|--------------------------|--| | Conductivity
(μS/cm) | Temperature
(°C) | | Dissolved Oxygen
(mg/l) | | Turbidity
(NTU) | | | | 817 | 1 | 16.38 | 6.62 | | 55.0 | | | | Habitat Complexity Scoring | | | | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut
Banks | Overhanging
Vegetation | Roots | Artificial
Structures | | | 4 | 2 | 1 | 0 | 0 | 0 | 4 | | The five species of fish captured were: California roach, prickly sculpin, Sacramento sucker, largemouth bass (*Micropterus salmoides*), and mosquitofish. The most abundant species encountered was Sacramento sucker (n=16). Fish captured and associated population estimates are summarized in Table 11. In station GR004 the maximum likelihood iterations indicate that the number of California roach and Sacramento sucker is likely higher than what was captured. No *O. mykiss* were captured at this sampling station. Table 11: Number captured and population estimates at Station GR004 on the Guadalupe River. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-------|--------| | California roach | Yes | 11 | 14 | 5.64 | 11-26 | | Prickly sculpin | Yes | 1 | - | - | - | | Sacramento sucker | Yes | 16 | 17 | 2.241 | 16-22 | | Largemouth bass | No | 2 | 2 | 1.038 | 2-15 | | Mosquitofish | No | 1 | - | - | - | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station GR004 has 13 years of comparable data. As at previous sites, drought induced dry-backs occurred in this reach in 2015. Figure 13 shows the standardized capture of *O. mykiss* between 2004 and 2018. This station historically has low occurrence of *O. mykiss*. Of the 13 years of data, only two years had collection of *O. mykiss* with the highest fish per meter observed in 2012 at 0.20 fish. The average *O. mykiss* per meter based on the 2004-2017 dataset for this station is 0.03 fish. Results indicate that juvenile rearing in this portion of the Guadalupe River is historically extremely low. Figure 13: Station GR004 (previously Station 8) standardized *O. mykiss* capture 2004-2018. ### GR005 This is a new (WY 2018) monitoring station, directly downstream of the Virginia Street bridge. The sampling station was 40 m in length with an average wetted width of 8.0 m and an average depth of 0.7 m. Three habitat types were present within the station: riffle, run, and cascade (Figure 14). The "cascade" portion of the habitat was the result of an unpermitted, human-made rock and rubble creek crossing placed in the creek. The crossing was reported and removed by a volunteer group following sampling activities. Homeless camps were present in the area. The riffle including the small "cascades" made up 25% of the habitat with the run making up the remaining 75%. The primary substrate was silt with a secondary substrate of boulders. A lot of debris and fallen limbs were present in the lower portion of the station limiting visibility of the substrate. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 12. Figure 14: Photos of station GR005, looking upstream (left) and looking downstream (right). Table 12: Guadalupe River station GR005 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |---|-------|------|----|--|--|--|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | 863 | 15.25 | 8.83 | 52 | | | | | | Habitat Complexity Scoring | | | | | | | | |--|--|--|--|--|--|--|--| | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | 2 3 0 2 1 2 4 | | | | | | | | The third electrofishing pass was abbreviated as an adult Chinook salmon (*Oncorhynchus tshawytscha*) was captured (Figure 15). The Chinook salmon was estimated at 650 mm and was adipose fin-clipped, indicating that it was of hatchery origin and had strayed into Guadalupe River. The Chinook salmon was not observed until the third pass. All sampling ceased at the station after the Chinook salmon was captured. A total of seven species of fish were captured: California roach, Sacramento sucker, Chinook salmon, common carp (*Cyprinus carpio*), green sunfish, largemouth bass, and mosquitofish. The most abundant species encountered was Sacramento sucker (n=9). Fish captured and associated population estimates are summarized in Table 13. No *O. mykiss* were captured at this sampling station. Figure 15: Hatchery stray Chinook salmon captured in GR005. Table 13: Number captured and population estimates at Station GR005 on the Guadalupe River. | Species | Native | n | N | SE | 95% CI | |-----------------------------|--------|---|---|-------|--------| | California roach | Yes | 8 | 8 | 0.769 | 8-10 | | Sacramento sucker | Yes | 9 | 9 | 0.947 | 9-11 | | Chinook salmon ¹ | No | 1 | - | - | - | | Common carp | No | 1 | - | - | - | | Green sunfish | No | 3 | 5 | 9.677 | 3-32 | | Largemouth bass | No | 1 | • | - | - | | Mosquitofish | No | 4 | 6 | 0 | 4-6 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval In station GR005 the maximum likelihood iterations indicate that the number of green sunfish and mosquitofish was likely higher than what was captured. This station had the highest species richness on the Guadalupe River, but consisted of 71% non-native species. #### GR006 This is a new (WY 2018) monitoring station. It is the most upstream station on the mainstem Guadalupe River and is within the UGRP Segment 10B, where geomorphic and riparian mitigation has been implemented. The sampling station was 40 m in length with an
average wetted width of 2.0 m and an average depth of 0.2 m. Habitat at the station was 60% riffle and 40% glide (Figure 16). The primary substrate was cobble with a secondary substrate of boulders. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 14. _ ¹ While Chinook salmon are native to California, there is no historical data suggesting they were historically present in Santa Clara County. Genetic analysis indicates that Chinook salmon in the Guadalupe River watershed are hatchery strays (Garcia-Rossi and Hedgecock 2002). For this analysis, Chinook salmon were considered a non-native species. Figure 16: Photos of station GR006, looking upstream (left) and looking downstream (right). Table 14: Guadalupe River station GR006 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|-----|-----------|------------|------|---|------|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | 553 | 1 | 16.58 | | 9.70 | | 26.5 | | | | Hab | itat Comp | lexity Sco | ring | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | 4 | 2 | 0 | 1 | 2 | 2 | 0 | | Four species of fish were captured: prickly sculpin, Sacramento sucker, largemouth bass, and mosquitofish. The most abundant species encountered was Sacramento sucker (n=16). Fish captured and associated population estimates are summarized in Table 15. Table 15: Number captured and population estimates at Station GR006 on the Guadalupe River. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-----|--------| | Prickly sculpin | Yes | 1 | • | - | - | | Sacramento sucker | Yes | 16 | 16 | 0.9 | 16-18 | | Largemouth bass | No | 1 | - | - | - | | Mosquitofish | No | 1 | • | - | - | n = total number captured. N = calculated population estimate. SE = standard error. CI = confidence interval Station GR006 had low capture rates and the population estimates equaled the number of fish captured. Based on these results, it is not expected that other species of fish were present that were not accounted for in this census. ## Discussion No *O. mykiss* were collected at any of the sampling stations on the Guadalupe River in WY 2018. Based on the previous Guadalupe River Project monitoring (WYs 2004-2017), it is not uncommon for this species to be absent at individual sampling stations on mainstem Guadalupe River. Since 2004, no sampling station in the Guadalupe River has consistently had *O. mykiss*. The 2018 sampling effort is the fourth continuous year with no detections, the longest period with no *O. mykiss* detections since juvenile rearing monitoring began. Habitat is present that could support rearing of *O. mykiss*. It is not entirely clear why juvenile *O. mykiss* have not been detected in Guadalupe River in recent years. There have been no detectable changes in physical habitat on the Guadalupe River that would trigger such a decrease. All stations sampled had some sort of habitat complexity (i.e., undercut banks, large woody debris, or submerged roots) that could be used as *O. mykiss* refugia, and riffle habitat that should support fast-water feeding requirements. The measurable objectives for streamside vegetation in the Downtown Project are being met, and other fisheries monitoring indicators, such as suitable habitat area, have indicated that habitat is available and consistent with unaltered index reaches (SCVWD and Stillwater Sciences 2018). Previous MMRs have discussed the influence that sampling timing appears to have on the number of *O. mykiss* detected in mainstem Guadalupe River. In years that sampling occurred after a rain event, more O. mykiss were observed, but in each year between 2004-2013 fish were detected in portion of the Guadalupe River (SCVWD and Stillwater Sciences 2013). In 2018 sampling occurred prior to any storm events that would have stimulated downstream fish migration. Data collected in December 2018 on a Vaki RiverWatcher located on the Guadalupe River at the Alamitos Drop Structure also supports the hypothesis that rain events may influence abundance in the Guadalupe River. After the first rain event, juvenile *O. mykiss* were observed moving downstream through the counting system (SCVWD 2019). In addition, sampling by Hobbs et al. (2014) which occurred later in the season in December 2013, and January, February, and March 2014, also yielded *O. mykiss* on the mainstem Guadalupe River. *O. mykiss* PIT tagged on the Guadalupe River by Hobbs et al. (2014) were recorded out-migrating in February and March of the same year. Together, these results could potentially indicate that the Guadalupe River is not a primary producer of *O. mykiss*, or preferred area of summer rearing of *O. mykiss*, but serves as a migration corridor or for winter rearing and smoltification. In the future, SCVWD will attempt to monitor juvenile rearing prior to any storm events to help control for the influence that downstream fish migration likely has on capture rates. Patterns in the capture of other native fish add to the evidence that fish populations have not yet rebounded after the severe drought conditions in 2014-2016. Prior to 2014, the average annual catch of all native fish in the four consistently sampled stations was 4.48 fish per meter (California roach were particularly plentiful). In 2015 and 2016, some stations yielded zero fish or were completely dry. From 2015 to 2018 the average annual catch was 0.56 fish per meter. In 2018 the average total catch was 0.69 fish per meter. This is higher than the post-drought average, but still much lower than what was historically observed. It is expected that over time, after *O. mykiss* and other native fish populations rebound in upper watershed tributaries, *O. mykiss* migration into the mainstem Guadalupe River, and other native fish populations, will increase. Future juvenile rearing monitoring will be used to evaluate this expectation. # 3.2 Guadalupe Creek Sampling occurred at six stations on the Guadalupe Creek on October 16, 17, and November 6, 2018. All sampling days were sunny and clear. Flows at the four stations upstream of Masson Dam on Guadalupe Creek (GR003 – GR006), based on ALERT Gage 5017 Guadalupe Creek below Guadalupe Reservoir, were 2.1 cfs. Flows at the two stations downstream of Masson Dam (GC001 and GC002), based on ALERT gage 5114 Masson Fish Ladder- Low Flow Only, were approximately 2.5 cfs. ## GC001 This was the most downstream station sampled and had been sampled during the previous monitoring effort; during the data collection effort between 2004 and 2017, this station was known as Site 14. This sampling station is surrounded by urban residential housing and falls within a mitigation reach for the Downtown Project, where extensive geomorphic and riparian restoration occurred. The restoration was completed in 2002. The sampling station was 40 m in length with an average wetted width of 2.25 m and an average depth of 0.25 m. Two habitat types were present within the station: riffle and run (Figure 17). Each made up 50% of the sampled area. The primary substrate was cobble with a secondary substrate of silt. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 16. Figure 17: Photos of station GC001, looking upstream (left) and looking downstream (right). Table 16: Station GC001 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|----|------------|---------------|------|---|-----|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | 482 | | 15.82 | | 9.54 | | 0.6 | | | | На | abitat Com | plexity Scori | ing | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | 3 | 1 | 1 | 0 | 2 | 2 | 0 | | Three species of fish were captured during the survey: *O. mykiss,* prickly sculpin, and largemouth bass. The most abundant species encountered was prickly sculpin (n=21). One *O. mykiss* was captured and PIT tagged during the sampling effort (additional details on captured *O. mykiss* are provided in the Discussion section). Fish captured and associated population estimates are summarized in Table 17. The maximum likelihood iterations indicate that the number of largemouth bass is likely higher than what was captured. Table 17: Number captured and population estimates at Station GC001 on Guadalupe Creek. | Species | Native | n | N | SE | 95% CI | |-----------------|--------|----|----|-------|--------| | O. mykiss | Yes | 1 | - | - | - | | Prickly sculpin | Yes | 21 | 21 | 0.849 | 21-23 | | Largemouth bass | No | 5 | 6 | 3.572 | 5-15 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station GC001 has 13 years of comparable data. No data was collected in this reach in 2015 due to drought-induced drybacks. Figure 18 shows the standardized capture of *O. mykiss* between 2004 and 2018. In most years *O. mykiss* were captured at this station. The highest capture rate occurred in 2006 at 0.20 fish/meter. The average *O. mykiss* density at this site between 2004-2017 was 0.05 fish per meter. The density during the 2018 monitoring was 0.03 *O. mykiss* per meter. This was lower than the average from previous years' data collection effort. Results indicate that juvenile rearing in this portion of Guadalupe Creek is variable, numbers were below average for this station in 2018,
but recolonization did occur after the 2014 drought conditions and dry-backs of 2015. Figure 18: Station GC001 (previously Station 14) standardized *O. mykiss* capture 2004-2018. #### GC002 This station was sampled during the previous monitoring effort; during the data collection effort between 2004 and 2017, this station was known as Site 16. The station is also within the mitigation reach for the Downtown Project. The sampling station was 40 m in length with an average wetted width of 4.0 m and an average depth of 0.3 m. Three habitat types were present within the station: riffle, glide, and run (Figure 19). The run habitat made up 35%, the riffle 40%, and the glide made up the remaining 25%. The primary substrate was cobble with a secondary substrate of silt. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 18. Figure 19: Photos of station GC002, looking upstream (left) and looking downstream (right). Table 18: Station GC002 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | |--|----|------------|---------------|------|-----|---|--|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | | 468 | | 17.60 9.60 | | 9.60 | 1.2 | | | | | | Ha | abitat Com | plexity Scori | ing | | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | | 2 | 1 | 1 | 0 | 3 | 2 | 0 | | | Four species of fish were captured during the survey: *O. mykiss*, prickly sculpin, riffle sculpin, and largemouth bass. The most abundant species encountered was prickly sculpin (n=12), and the maximum likelihood iteration indicated the population was likely higher than what was captured (N=14). Two *O. mykiss* were captured during the sampling effort and were PIT tagged prior to being released. Fish captured and associated population estimates are summarized in Table 19. American bullfrog (*Lithobates catesbeianus*) larvae were also collected in this reach. Table 19: Number captured and population at Station GC002 on Guadalupe Creek. | Species | Native | n | N | SE | 95% CI | |-----------------|--------|----|----|-------|--------| | O. mykiss | Yes | 2 | 2 | 0.384 | 2-7 | | Prickly sculpin | Yes | 12 | 14 | 3.8 | 12-22 | | Riffle sculpin | Yes | 9 | 9 | 0.461 | 9-10 | | Largemouth bass | No | 4 | 4 | 0.969 | 4-7 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station GC002 has 13 years of comparable data. No data was collected in this reach in 2015 due to drought-induced drybacks. Figure 20 shows the standardized capture of *O. mykiss* between 2004 and 2018. In most years *O. mykiss* were captured at this station. The highest capture rate was 0.10 fish/meter, and occurred in years 2005, 2010, and 2017. The average *O. mykiss* density at this site between 2004-2017 was 0.04 fish per meter. The density during the 2018 monitoring was 0.05 *O. mykiss* per meter. Results indicate that juvenile rearing in this portion of Guadalupe Creek is variable, and 2018 had higher than average densities. This station was the only station to have detection of *O. mykiss* in 2016, and has continued to support these fish after the drought starting in 2014 and drybacks of 2015. Figure 20: Station GC002 (previously Station 16) standardized *O. mykiss* capture 2004-2018. # GC003 This station was sampled during the previous monitoring effort; during the data collection effort between 2004 and 2017, this station was known as Site 18. The station is upstream of Masson Dam, and is in an urban residential area. The sampling station was 40 m in length with an average wetted width of 4.0 m and an average depth of 0.2 m. Three habitat types were present within the station: riffle, run, and pool (Figure 21). Habitat at the station was 48% riffle, 25% run, and 27% pool. The primary substrate was cobble with a secondary substrate of gravel. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 20. Figure 21: Photos of station GC003, looking upstream (left) and looking downstream (right). Table 20: Station GC003 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|----|------------|---------------|-----|-----------------|---|--| | | | | | | rbidity
NTU) | | | | 445 | | 13.07 | 9.70 | | 13.0 | | | | | На | abitat Com | plexity Scori | ing | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
 | | | | | | | | | 2 | 1 | 1 | 0 | 3 | 1 | 0 | | Four species of fish were captured during the survey: *O. mykiss*, California roach, riffle sculpin, and Sacramento sucker. The most abundant species encountered was riffle sculpin (n=58). Thirty-three *O. mykiss* were captured during the sampling effort, 30 of which were ≥65 mm so they were PIT tagged prior to being released. Fish captured and associated population estimates are summarized in Table 21. In station GC003 the maximum likelihood iterations indicate that the number of California roach and *O. mykiss* is likely higher than what was captured. An estimate of 50 *O. mykiss* within the station was generated, but the standard error associated with the data is high. No non-native fish species were present in the reach. Table 21: Numbered captured population estimates at Station GC003 on the Guadalupe Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|--------|--------| | O. mykiss | Yes | 33 | 50 | 18.355 | 33-87 | | California roach | Yes | 30 | 32 | 2.654 | 30-37 | | Riffle sculpin | Yes | 58 | 58 | 1.058 | 58-60 | | Sacramento sucker | Yes | 3 | 3 | 0.709 | 3-6 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station GC003 has 14 years of comparable data. Figure 22 shows the standardized capture of *O. mykiss* between 2004 and 2018. No sampling occurred in 2014 due to drought conditions. In all but four years, *O. mykiss* were captured at this station. This reach did not experience drybacks in 2015, but flow conditions were very low and no *O. mykiss* were captured in 2015 or 2016. In 2017 the fish returned, but in low density. The average *O. mykiss* density at this site between 2004-2017 was 0.10 fish per meter. The 2018 sampling resulted in the highest observed capture rate at 0.83 fish per meter and an estimated density of 1.25 *O. mykiss* per meter. This is one of the highest densities recorded during the 14-year monitoring period and was the highest observed capture rate for the entire Guadalupe River watershed 2018 monitoring effort. Results indicate that juvenile rearing in this portion of Guadalupe Creek is variable, and 2018 had much higher than average densities. Figure 22: Station GC003 (previously Station 18) standardized *O. mykiss* capture 2004-2018. # GC004 This station was sampled during the previous monitoring effort; during the data collection effort between 2004 and 2017, this station was known as Site 20 and was the most upstream station sampled. The station is situated amongst rural residential areas. The sampling station was 40 m in length with an average wetted width of 6.0 m and an average depth of 0.15 m. Three habitat types were present within the station: riffle, run, and pool (Figure 23). Habitat at the station was 55% riffle, 28% run, and 28% pool. The primary substrate was cobble with a secondary substrate of boulders. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 22. Figure 23: Photos of station GC004, looking upstream (left) and looking downstream (right). Table 22: Station GC004 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | |--|----|------------|---------------|-------|---|------|--|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | | 402 | | 16.49 | | 10.87 | | 11.2 | | | | | Ha | abitat Com | plexity Scori | ng | | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | | 1 | 3 | 1 | 2 | 3 | 2 | 0 | | | Two species of fish were captured during the survey: *O. mykiss* and riffle sculpin. The most abundant species encountered was riffle sculpin (n=125). Eight *O. mykiss* were captured during the sampling effort, four of which were ≥65 mm so they were PIT tagged prior to being released. Fish captured and associated population estimates are summarized in Table 23. Table 23: Number captured and population estimates at Station GC004 on the Guadalupe Creek. | Species | Native | n | N | SE | 95% CI | |----------------|--------|-----|-----|-------|---------| | O. mykiss | Yes | 8 | 8 | 0.512 | 8-9 | | Riffle sculpin | Yes | 125 | 139 | 7.285 | 125-153 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station GC004 has 14 years of comparable data. Figure 24 shows the standardized capture of *O. mykiss* between 2004 and 2018. In all but three years, *O. mykiss* were captured at this station. This reach did not experience drybacks in 2015, but flow conditions were very low and no *O. mykiss* were captured in 2015 or 2016. In 2017 the fish returned. The highest density of *O. mykiss* occurred in 2005 at 1.03 fish per meter. This was the highest
density recorded at any station during the entire 14-year monitoring period. The average *O. mykiss* density at this site between 2004-2017 was 0.45 fish per meter. The density during the 2018 monitoring was lower than the average from previous years data collection effort at 0.20 *O. mykiss* per meter, and this station has seen below average results during the last six sampling years. Though the densities are below average, the reach still appears to consistently support rearing, and recolonization occurred after the 2014 drought conditions. Figure 24: Station GC004 (previously Station 20) standardized *O. mykiss* capture 2004-2018. ## GC005 This station was part of the expanded monitoring effort (WY 2018) and was selected randomly. The station is surrounded by limited residential housing, but land disturbance to the east is present. The sampling station was 40 m in length with an average wetted width of 3.0 m and an average depth of 0.2 m. Three habitat types were present within the station: riffle, run, and a side channel pool (Figure 25). The riffle habitat made up 55%, the run 45%, and the pool was in a small side channel surrounded by a riffle to run transition. The primary substrate was cobble with a secondary substrate of boulders. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 24. Figure 25: Photos of station GC005, looking upstream (left) and looking downstream (right). Table 24: Station GC005 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|-----|-----------|------------|-------|---|-------|--| | ConductivityTemperatureDissolved OxygenTurbidity(μS/cm)(°C)(mg/l)(NTU) | | | | | | | | | 427 | 1 | 14.51 | | 11.61 | | 10.70 | | | | Hab | itat Comp | lexity Sco | ring | | | | | Macrophytes/Emergent
Vegetation Boulders Woody
Debris Undercut
Banks Overhanging
Vegetation Roots Artificial
Structures | | | | | | | | | 1 | 3 | 1 | 2 | 3 | 1 | 0 | | Two species of fish were captured during the survey: *O. mykiss* and riffle sculpin. The most abundant species encountered was riffle sculpin (n=73). Seventeen *O. mykiss* were captured during the sampling effort, 10 of which were ≥65 mm so they were PIT tagged prior to being released. Fish captured and associated population estimates are summarized in Table 25. In station GC005 the maximum likelihood iterations indicate that the number of both prickly sculpin and *O. mykiss* is likely higher than what was captured. Table 25: Number captured and population estimates at Station GC005 on Guadalupe Creek. | Species | Native | n | N | SE | 95% CI | |----------------|--------|----|----|-------|--------| | O. mykiss | Yes | 17 | 20 | 4.464 | 17-29 | | Riffle sculpin | Yes | 73 | 77 | 3.211 | 73-83 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Since this was the first year of sampling at this station no comparisons over time can be made, but the 2018 results for this station can be compared with the long-term average for Guadalupe Creek. This station had an observed density (based on n) of 0.43 *O. mykiss* per meter and an estimated density (based on N) of 0.50 *O. mykiss* per meter. The average *O. mykiss* density from the 2004-2017 sampling period for repeated Guadalupe Creek stations is 0.16 *O. mykiss* per meter. This station was above the long-term average for Guadalupe Creek and very similar to the average *O. mykiss* density of the closest repeated station—Station GC004 with 0.45 *O. mykiss* per meter. ## GC006 This station was part of the expanded monitoring effort and was selected randomly. The station is surrounded by limited rural residential housing and was the most upstream station sampled. The sampling station was 40 m in length with an average wetted width of 3.5 m and an average depth of 0.2 m. Three habitat types were present within the station: riffle, run, and pool (Figure 26). The riffle habitat made up 58%, the run 25%, and the pool the remaining 17%. The primary substrate was cobble with a secondary substrate of cobble. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 26. Figure 26: Photos of station GC006, looking upstream (left) and looking downstream (right). Table 26: Station GC006 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|-----|-----------|------------|-------|---|-------|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | 411 | 1 | 15.23 | | 13.80 | | 21.90 | | | | Hab | itat Comp | lexity Sco | oring | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificia
Structure | | | | | | | | | 1 | 1 | 1 | 1 | 4 | 2 | 0 | | Three species of fish were captured during the survey: *O. mykiss*, riffle sculpin, and Sacramento sucker. The most abundant species encountered was riffle sculpin (n=22). Five *O. mykiss* were captured during the sampling effort, three of which were ≥65 mm so they were PIT tagged prior to being released. Fish captured and associated population estimates are summarized in Table 27. The maximum likelihood iterations did not provide a population estimate higher than what was observed. Sacramento sucker were encountered in this station, but not in the two stations downstream. Table 27: Number captured and Population estimate at Station GC006 on the Guadalupe Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-------|--------| | O. mykiss | Yes | 5 | 5 | 0.444 | 5-6 | | Riffle sculpin | Yes | 22 | 22 | 0.814 | 22-24 | | Sacramento sucker | Yes | 3 | 3 | 0.709 | 3-6 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval As with Station GC005, this was the first year of sampling at this station so no comparisons over time can be made, but the 2018 results for this station can be compared with the long-term average for Guadalupe Creek. This station had an observed density (based on n) of 0.13 *O. mykiss* per meter. The average *O. mykiss* density from the 2004-2017 sampling period for repeated Guadalupe Creek stations is 0.16 *O. mykiss* per meter. This station is slightly below the long-term average for Guadalupe Creek, but still supported *O. mykiss*. ## Discussion Based on the results of the WY 2018 sampling, Guadalupe Creek continues to support rearing of *O. mykiss*. A total of 66 *O. mykiss* were collected in the six sampling stations. Fork-lengths ranged from 56 mm to 199 mm (Figure 27). Growth rates of juvenile *O. mykiss* in California are highly variable and are dependent on temperature, food availability, seasonal flow, and population densities/competition (Moyle 2002). According to Moyle (2002), in small streams with low summer flows, such as the Guadalupe Creek, young-of-the-year steelhead measure 50–90 mm, and fish at the end of their second year measure 100–160 mm. Smith and Leicester (2016) aged 32 fish from Guadalupe Creek and found that young-of-the-year *O. mykiss* ranged from 85–114 mm, and fish in their second year ranged from 110–195 mm. This is a faster growth rate than predicted by Moyle (2002), but this is expected in warmer, more productive systems. Based on Moyle (2002) and Smith and Leicester (2016) growth rates, *O. mykiss* captured in Guadalupe Creek in WY 2018 were predominantly young-of-the-year, with some that had been through a second summer, and one fish that may have been it its third year. The abundance of young-of-the-year fish observed indicates that Guadalupe Creek had successful reproduction and summer rearing in 2018. Figure 27: Guadalupe Creek *O. mykiss* length histogram. All measurements are in fork-length and binned in 10 mm increments. The average *O. mykiss* density for all repeated sampling stations in 2018 was 0.28 fish per meter (based on the number of fish caught [n]). The average *O. mykiss* per meter for the repeated sampling stations between 2004-2017 was 0.16 fish. The number of *O. mykiss* observed in 2018 was higher than average. When the expanded sampling stations (GC005 and GC006) are included in the 2018 average, it maintains a 0.28 *O. mykiss* per meter average (based on n); therefore, expanding the sampling upstream of the previously sampled stations (WYs 2004-2017) did not impact the average. The maximum likelihood iteration indicates that it is likely that the number of *O. mykiss* present in Guadalupe Creek is higher than what was observed during our sampling effort (0.35 fish per meter based on N). Based on the density of *O. mykiss* at each station, juvenile rearing appears to occur throughout Guadalupe Creek with no clear upto downstream trend (Figure 28). Figure 28: 2018 *O. mykiss* catch per unit effort oriented up- to downstream on Guadalupe Creek. Guadalupe Creek supports four species of native fish, with multiple age classes of *O. mykiss*, and few non-native species. Of the 66 *O. mykiss* encountered during the sampling efforts, five had a Neascus-type parasitic infection commonly called "blackspot" disease. The visible black spots associated with fish are the metacercaria stage of the free-swimming parasite that produce a melanin-induced fibrous cyst (Schaaf et al. 2017). None of the fish observed were classified as a severe infection (raised cysts present on greater than 25% of the body). Most infected fish were recorded as minor with only a few raised cysts (Figure 29). The impacts to *O. mykiss* associated with this infection are not known. When data from 2004-2017 is
also considered, the results indicate that *O. mykiss* production is variable, and the species is resilient. After not collecting any *O. mykiss* in Guadalupe Creek in 2015 and only two in 2016, there has been a steady increase in total number of O. mykiss collected. Guadalupe Creek is clearly important for production of *O. mykiss* in the Guadalupe River watershed. Figure 29: Guadalupe Creek *O. mykiss* with minor blackspot disease. Melanin induced cysts are circled in red. # 3.3 Los Gatos Creek Sampling occurred at four new stations on Los Gatos Creek on November 1 and 5, 2018; juvenile rearing monitoring had not been conducted previously in this system. All sampling days were sunny and clear. Flows on Los Gatos Creek, based on ALERT gage 5050 – Los Gatos Creek at Lincoln Avenue, were approximately 5.0 cfs. ## LG001 This was the most downstream station sampled on Los Gatos Creek. The station is bordered by urban development and there were numerous homeless encampments and other signs of human disturbance during sampling. The sampling station was 40 m in length with an average wetted width of 4.5 m and an average depth of 0.3 m. Two habitat types were present within the station: riffle and run (Figure 30). Each habitat type made up 50% of the area sampled. The primary substrate was gravel with a secondary substrate of cobble. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 28. Two species of fish were captured during the survey: California roach and Sacramento sucker. The most abundant species encountered was California roach (n=78). No *O. mykiss* were captured. Fish captured and associated population estimates are summarized in Table 29. Figure 30: Photos of station LG001, looking upstream (left) and looking downstream (right). Table 28: Station LG001 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|-------|-----------|------------|------|-------|---|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | - | | | 439 | 16.91 | | 10.12 | | 18.20 | | | | | Hab | itat Comp | lexity Sco | ring | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | 2 | 2 | 1 | 2 | 2 | 2 | 0 | | Table 29: Number captured and population estimates at Station LG001 on Los Gatos Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|-----|-------|--------| | California roach | Υ | 78 | 113 | 23.41 | 78-159 | | Sacramento sucker | Υ | 3 | 3 | 0 | 3-3 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Station LG001 had high capture rates for California roach, and the population estimates indicates that the number of fish was likely higher. All fish captured at this station were native. The lack of non-native fish at this station is positive and the habitat that is present could potentially support rearing of *O. mykiss*. ## LG002 The station is situated amongst urban residential areas. Large stands of non-native *Arundo donax* were present along the entire right bank and a sakrete wall lined portions of the left bank. The sampling station was 40 m in length with an average wetted width of 4.5 m and an average depth of 0.65 m. Three habitat types were present within the station: riffle, run, and pool (Figure 31). The riffle habitat made up 20%, the run made up 35%, and the pool made up the remaining 35%. The primary substrate was gravel with a secondary substrate of cobble. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 30. Figure 31: Photos of station LG002, looking upstream (left) and looking downstream (right). Table 30: Station LG002 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|-----|-----------|------------|------|-------|-----------------|--| | , | | | | | | rbidity
NTU) | | | 457 | 1 | 15.96 | 10.18 | | 12.90 | | | | | Hab | itat Comp | lexity Sco | ring | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
 | | | | | | | | | 3 | 2 | 1 | 2 | 1 | 2 | 2 | | Three species of fish were captured: California roach, Sacramento sucker, and mosquitofish. The most abundant species encountered was California roach (n=43). No *O. mykiss* were captured. Fish captured and associated population estimates are summarized in Table 31. Table 31: Number captured and population estimate at Station LG002 on Los Gatos Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-------|--------| | California roach | Υ | 43 | 46 | 3.249 | 43-53 | | Sacramento sucker | Υ | 27 | 27 | 0.925 | 27-29 | | Mosquitofish | N | 4 | 6 | 0 | 4-6 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval There were high capture rates of native fish at Station LG002. The only non-native species captured was mosquitofish. The pool habitat in the downstream portion of this station is suitable for non-native predatory fish, so the absence of these species is positive. #### LG003 The station is bordered by residential development. Trash and other impacts associated with homeless encampments and other human uses were prevalent in the area surrounding this station. The sampling station was 40 m in length with an average wetted width of 3.5 m and an average depth of 0.3 m. Three habitat types were present within the station: riffle, run, and glide (Figure 32). The riffle habitat made up 28%, the run 65% and the glide the remaining 7%. The primary substrate was cobble with a secondary substrate of boulders. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 32. Figure 32: Photos of station LG003, looking upstream (left) and looking downstream (right). Table 32: Station LG003 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|-----|-----------|------------|-------|---|-------|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | 448 | 1 | 16.63 | | 10.73 | | 13.40 | | | | Hab | itat Comp | lexity Sco | ring | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificia
Structure | | | | | | | | | 1 | 3 | 1 | 2 | 2 | 2 | 0 | | Two species of fish were captured during the survey: prickly sculpin and Sacramento sucker. The most abundant species encountered was Sacramento sucker (n=15). No *O. mykiss* were captured. Fish captured and associated population estimates are summarized in Table 33. Station LG003 had lower capture rates for California roach and Sacramento sucker than the reaches downstream, but no non-native fish were captured. The lack of non-native fish at this station is positive, and the habitat that is present could potentially support rearing of *O. mykiss*. Table 33: Number captured and population estimates at Station LG003 on Los Gatos Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-------|--------| | Prickly sculpin | Υ | 2 | 2 | 0.384 | 2-7 | | Sacramento sucker | Υ | 16 | 17 | 1.997 | 16-21 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval #### LG004 This is the most upstream station and is situated amongst commercial development. The sampling station was 40 m in length with an average wetted width of 4.0 m and an average depth of 0.6 m. Two habitat types were present within the station: riffle and run (Figure 33). The riffle habitat made up 45% of the habitat and the run the remaining 55%. The primary substrate was cobble with a secondary substrate of gravel. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 34. Five species of fish were captured during the survey: Sacramento sucker, common carp, goldfish (*Carassius auratus*), largemouth bass, and mosquitofish. The most abundant species encountered was Sacramento sucker (n=10) and it was the only native species observed at the station. No *O. mykiss* were captured at this sampling station. Fish captured and associated population estimates are summarized in Table 35. Figure 33: Photos of station LG004, looking upstream (left) and looking downstream (right). Table 34: Station LG004 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | |--|-----|-----------|------------|------|---|-------|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | 451 | 1 | 16.85 | | 7.80 | | 16.40 | | | | Hab | itat Comp | lexity Sco | ring | | | | | Macrophytes/Emergent
Vegetation Boulders Woody
Debris Undercut
Banks Overhanging
Vegetation Roots
Structure | | | | | | | | | 1 | 3 | 1 | 2 | 3 | 2 | 0 | | Table 35: Number captured and population estimates at Station LG004 on Los Gatos Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-------|--------| | Sacramento sucker | Υ | 10 | 14 | 8.151 | 10-32 | | Common carp | N | 1 | - | - | - | | Goldfish |
N | 2 | 2 | 1.876 | 2-26 | | Largemouth bass | N | 3 | 3 | 1.271 | 3-8 | | Mosquitofish | N | 7 | 7 | 0.124 | 7-7 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Though the native Sacramento Sucker was the most abundant species, the overall species richness was 80% non-native. This station also supported goldfish and common carp, which were not seen at other sampling stations within the system. ## Discussion No *O. mykiss* were collected in Los Gatos Creek in WY 2018, although all stations had some suitable habitat complexity (i.e., undercut banks, large woody debris, or submerged roots) that could be used as refugia and had riffle habitat that should support fast-water feeding requirements. Since this was the first year of sampling on this creek, the historic densities are not known. *O. mykiss* are present in the system, at least periodically, as they have been observed by others. For example, Hobbs et al. (2014) sampled Los Gatos Creek in January and February 2014 and captured a total of nine *O. mykiss* at two stations, but captured none in October 2014 at a sampling station near Bascom Avenue (Hobbs et al. 2015). It is likely that *O. mykiss* production is not high in this system, and/or Los Gatos Creek could be subject to some of the same issues as the mainstem Guadalupe River, such as lack of population recovery from drought conditions. Additional juvenile rearing monitoring in future years will help evaluate this hypothesis. Los Gatos Creek had a relatively low proportion of non-native species in the three downstream-most sampling reaches, and although the upstream-most reach had more non-native species, native fish were still more abundant. As with *O. mykiss* productivity, a better understanding of occurrence and trends of other native and non-native fish are expected to develop as additional juvenile rearing data is collected. ## 3.4 Alamitos Creek Sampling occurred at four stations on Alamitos Creek on October 18 and 22, 2018. Most sampling days were overcast. Flows at the two upstream-most stations, based on ALERT gage 1544 Alamitos Creek below Almaden Reservoir, were approximately 2.6 cfs. Flows at the two downstream-most stations (AC001 and AC002), which are downstream of the confluence with Calero Creek, were approximately 5.0 cfs, based on ALERT gage 5070 Alamitos Creek at Greystone. # AC001 This was the most downstream station sampled on Alamitos Creek. The station is situated in an urban residential area with a walking trail along the left bank. The sampling station was 40 m in length with an average wetted width of 4.5 m and an average depth of 0.2 m. Two habitat types were present within the station: riffle and run (Figure 34). The riffle habitat made up 55% of the habitat and the run the remaining 45%. The primary substrate was cobble with a secondary substrate of gravel. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 36. Figure 34: Photos of station AC001, looking upstream (left) and looking downstream (right). Table 36: Station AC001 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | |---|----------|---|------|---------------------------|-------|--------------------------|--|--| | Conductivity Temperature Dissolved Oxygen Turbidity (μS/cm) (°C) (mg/l) (NTU) | | | | | | | | | | 483 | 16.89 | | 9.63 | | 13.50 | | | | | Habitat Complexity Scoring | | | | | | | | | | Macrophytes/Emergent
Vegetation | - ROMARS | | | Overhanging
Vegetation | Roots | Artificial
Structures | | | | 3 | 1 | 1 | 2 | 1 | 2 | 0 | | | Four species of fish were captured during the survey: *O. mykiss*, California roach, prickly sculpin, and Sacramento sucker. The most abundant species encountered was California roach (n=193). Four *O. mykiss* were captured and PIT tagged at this station. Fish captured and associated population estimates are summarized in Table 37. The maximum likelihood iterations provided population estimates higher than what was recorded for California roach and prickly sculpin. All fish species captured were native. Table 37: Number captured and population at Station AC001 on Alamitos Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|-----|-----|--------|---------| | O. mykiss | Υ | 4 | 4 | 0.969 | 4-7 | | California roach | Υ | 193 | 219 | 10.534 | 193-240 | | Prickly sculpin | Υ | 31 | 38 | 7.29 | 31-53 | | Sacramento sucker | Υ | 22 | 22 | 1.114 | 22-24 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval Since this was the first year of sampling within this station, no direct comparisons of densities of *O. mykiss* over time can be made. As more data is collected trends can begin to be evaluated. #### AC002 The station is situated in an urban residential area with a walking trail along the right bank. The sampling station was 40 m in length with an average wetted width of 4.5 m and an average depth of 0.4 m. Three habitat types were present within the station: riffle, run, and pool (Figure 35). The riffle habitat made up 40% of the habitat, the run 35%, and a pool the remaining 25%. The primary substrate was cobble with a secondary substrate of boulders. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 38. Figure 35: Photos of station AC002, looking upstream (left) and looking downstream (right). Table 38: Station AC002 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | |--|-----|------------------|----------------------------|---|--------------------|---|--|--| | Conductivity
(μS/cm) | Tem | perature
(°C) | Dissolved Oxygen
(mg/l) | | Turbidity
(NTU) | | | | | 462 | 1 | 17.01 | 9.94 | | 22.90 | | | | | Habitat Complexity Scoring | | | | | | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | | 2 | 2 | 0 | 0 | 2 | 2 | 0 | | | Five species of fish were captured during the survey: *O. mykiss*, California roach, prickly sculpin, Sacramento sucker, and tule perch (*Hysterocarpus traskii*). The most abundant species encountered was prickly sculpin (n=36). Ten *O. mykiss* were captured and PIT tagged at this station. Fish captured and associated population estimates are summarized in Table 39. Table 39: Number captured and population estimates at Station AC002 on Alamitos Creek. | Species | Native | n | N | SE | 95% CI | |-------------------------|--------|----|----|--------|--------| | O. mykiss | Yes | 10 | 20 | 25.403 | 10-73 | | California roach | Yes | 26 | 27 | 1.73 | 26-31 | | Prickly sculpin | Yes | 30 | 32 | 2.828 | 30-38 | | Sacramento sucker | Yes | 7 | 24 | 84.855 | 7-200 | | Tule perch ² | No | 1 | - | - | - | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval At station AC002 the maximum likelihood iterations provided population estimates higher than what was observed for California roach, prickly sculpin, Sacramento sucker, and *O. mykiss*. A population estimate of 20 *O. mykiss* within the station was calculated, but the standard error is high. Tule perch are native to California and were historically observed in the Coyote Creek watershed in 1922 (Hubbs 1925). This species was thought to be extirpated in Santa Clara County until 1999 when a single specimen was captured in Coyote Creek (SCVWD 2015). Tule perch do not show up in the historic records in Guadalupe Watershed, but are now established in Calero Reservoir (Leal et al. 2017). It is assumed that the reservoir is the source for the population in Alamitos Creek. Though the species is regionally native, it was likely not present in the Guadalupe Watershed until introductions to Calero Reservoir. Since this was the first year of sampling within this station, no direct comparisons of densities of *O. mykiss* over time can occur. As more data is collected in this station trends will be able to be evaluated overtime. #### AC003 The station is located upstream of the Calero Creek confluence and is situated in an urban residential area. The right bank through half of the station has large boulders that were placed by a previous bank protection project. The sampling station was 40 m in ² Tule perch are native to California and were observed in the Coyote Creek watershed in 1922 (Hubbs 1925). Though the species is regionally native, it was likely not historically present in the Guadalupe Watershed. For this analysis the species is considered non-native. length with an average wetted width of 3.0 m and an average depth of 0.3 m. Four habitat types were present within the station: riffle, run, glide, and rapids (Figure 36). The riffle habitat only made up 0.2% of the habitat, but the rapids through the large boulders of the bank protection directly downstream contributed to 28%. The run habitat made up 1% with the glide contributing the remaining 70.8%. The primary substrate was cobble with a secondary substrate of boulders. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 40. Figure 36: Photos of station AC003, looking upstream (left) and looking downstream (right). Table 40: Station AC003 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | |--|-----------|------------------|-------------------------|------|--------------------
-------|--|--| | Conductivity
(μS/cm) | Tem | perature
(°C) | Dissolved Oxygen (mg/l) | | Turbidity
(NTU) | | | | | 401 | 401 15.38 | | | 9.93 | 2 | 20.20 | | | | Habitat Complexity Scoring | | | | | | | | | | Macrophytes/Emergent
VegetationBouldersWoody
DebrisUndercut
BanksOverhanging
VegetationRootsArtificial
Structures | | | | | | | | | | 3 | 3 | 1 | 1 | 2 | 2 | 0 | | | Four species of fish were captured during the survey: *O. mykiss*, California roach, Sacramento sucker, and green sunfish. The most abundant species encountered was California roach (n=156). Ten *O. mykiss* were captured and PIT tagged at this station. Fish captured and associated population estimates are summarized in Table 41. Table 41: Number captured and population estimates at Station AC003 on Alamitos Creek. | Species | Native | N | N | SE | 95% CI | |-------------------|--------|-----|-----|---------|---------| | O. mykiss | Yes | 10 | 12 | 4.152 | 10-21 | | California roach | Yes | 156 | 226 | 32.81 | 156-291 | | Sacramento sucker | Yes | 23 | 90 | 204.048 | 23-495 | | Green sunfish | No | 2 | 2 | 1.038 | 2-15 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval In station AC003 the maximum likelihood iterations provided population estimates higher than what was recorded for California roach, Sacramento sucker, and *O. mykiss*. This was the first station where non-native green sunfish were observed, but the density was the lowest out of all fish species captured. Since this was the first year of sampling within this station, no direct comparisons of densities of *O. mykiss* over time can occur. As more data is collected in this station trends will be able to be evaluated overtime. #### AC004 AC004 is the most upstream station on Alamitos Creek. Portions of the station were underneath the bridge that connects Almaden and Bertram Roads. The bridge footing extended into the channel. The sampling station was 40 m in length with an average wetted width of 5.0 m and an average depth of 0.3 m. Three habitat types were present within the station: riffle, run, and glide (Figure 37). The riffle habitat made up 50% of the habitat, the run 15%, and the glide contributed the remaining 35%. The primary substrate was boulders with a secondary substrate of cobbles. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 42. Figure 37: Photos of station AC004, looking upstream (left) and looking downstream (right). Table 42: Station AC004 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | | | | |------------------------------------|----------------------------|------------------|-------------------|---------------------------|--------------------|--------------------------|--|--|--|--|--| | Conductivity
(μS/cm) | Tem | perature
(°C) | | red Oxygen
mg/l) | Turbidity
(NTU) | | | | | | | | 390 | 1 | 16.50 | 1 | 10.87 | 14.0 | | | | | | | | | Habitat Complexity Scoring | | | | | | | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut
Banks | Overhanging
Vegetation | Roots | Artificial
Structures | | | | | | | 1 | 4 | 1 | 2 | 3 | 2 | 1 | | | | | | Three species of fish were captured during the survey: *O. mykiss*, California roach, and prickly sculpin. *O. mykiss* were the most abundant species present and of the eight captured, six were ≥65 mm so they were PIT tagged prior to being released. Fish captured and associated population estimates are summarized in Table 43. Table 43: Number captured and population estimates at Station AC004 on Alamitos Creek. | Species | Native | n | N | SE | 95% CI | |------------------|--------|---|---|-------|--------| | O. mykiss | Yes | 8 | 9 | 2.612 | 8-15 | | California roach | Yes | 7 | 8 | 2.993 | 7-15 | | Prickly sculpin | Yes | 2 | 2 | 0 | 2-2 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval In station AC004 the maximum likelihood iterations provided population estimate higher than what was recorded for California roach and *O. mykiss*. All fish species captured were native. Since this was the first year of sampling within this station, no direct comparisons of densities of *O. mykiss* over time can occur. As more data is collected at this station trends will be able to be evaluated overtime. # Discussion A total of 32 *O. mykiss* were collected in the four Alamitos Creek sampling stations. Fork-lengths ranged from 60 mm to 345 mm (Figure 38). Based on Moyle (2002) and Smith and Leicester (2016) growth rates, approximately half of the *O. mykiss* captured in WY 2018 were young-of-the-year and the other half have been through their second summer. One large, presumably resident rainbow trout measuring 345 mm was also captured. This size suggests the fish was at the end of its fourth year (Moyle 2002). Based on the results of the WY 2018 sampling, Alamitos Creek had successful reproduction and appears to support rearing of *O. mykiss* throughout its length (Figure 39). Alamitos Creek had successful reproduction and summer rearing in 2018. The *O. mykiss* in this system also showed signs of blackspot disease. Of the 31 captured, 15 had visible symptoms, with one being recorded as severe (Figure 40). Of all systems sampled, blackspot disease was most prevalent in Alamitos Creek *O. mykiss*. Figure 38: Alamitos Creek O. mykiss length histogram. All measurements are in fork-length and binned in 10 mm increments. The average catch of *O. mykiss* in Alamitos Creek in 2018 was 0.20 fish per meter (Figure 39). When compared to the average standardized catch at repeated sampling stations between 2004-2018 on Guadalupe Creek (0.17 *O. mykiss* per meter) it is above average. During a fish relocation for a habitat improvement project approximately 500 m downstream of station AC001, SCVWD's Stream Maintenance Program (SMP) staff documented a density of 0.53 *O. mykiss* per meter (64 total fish). This was higher than the densities at any of the sampling stations. This sampling also led to the ability to PIT tag an additional 26 fish in the Alamitos Creek sub-watershed. The sizes and tag number of these fish can be seen in Appendix A. Alamitos Creek is also supporting four other species of native fish, has a small population of tule perch that were once thought to be extirpated in Santa Clara County, and has relatively few non-native species. Non-native fish (including tule perch) made up less than 1% of the total number captured. Figure 39: *O. mykiss* catch per unit effort oriented up- to downstream on Alamitos Creek. Figure 40: Alamitos Creek *O. mykiss* with visible signs of blackspot disease (left being severe and right being minor). # 3.5 Calero Creek Sampling occurred at three stations on Calero Creek on October 23 and 24, 2018. The sampling days were a mix of overcast and clear. Flows on Calero Creek based on ALERT gage 5013 Calero Creek below Calero Reservoir were approximately 6.0 cfs. # CC001 This was the most downstream station sampled on Calero Creek. The station is situated in urban residential and was approximately 300 m upstream of the confluence with Alamitos Creek. The sampling station was 40 m in length with an average wetted width of 3.5 m and an average depth of 0.3 m. Three habitat types were present within the station: riffle, run, and pool (Figure 41). The riffle habitat made up 53% of the habitat, the run 35%, and the pool the remaining 12%. A small side channel pool was present but lacked connectivity to the main channel. The primary substrate was gravel with a secondary substrate of cobble. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 44. Figure 41: Photos of station CC001, looking upstream (left) and looking downstream (right). Table 44: Station CC001 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | | | | |------------------------------------|----------|------------------|-------------------|---------------------------|--------------------|--------------------------|--|--|--|--|--| | Conductivity
(μS/cm) | Tem | perature
(°C) | | red Oxygen
mg/l) | Turbidity
(NTU) | | | | | | | | 547 | 1 | 16.30 | | 25.0 | | | | | | | | | | Hab | itat Comp | lexity Sco | ring | | | | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut
Banks | Overhanging
Vegetation | Roots | Artificial
Structures | | | | | | | 3 | 1 | 1 | 2 2 | | 2 | 0 | | | | | | Five species of fish were captured during the survey: *O. mykiss*, California roach, prickly sculpin, Sacramento sucker, and tule perch. The most abundant species encountered was California roach (n=10). Four *O. mykiss* were captured and PIT tagged at this station. Fish captured and associated population estimates are summarized in Table 45. Table 45: Number captured and population estimate at Station CC001 on Calero Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|-------|--------| | O. mykiss | Yes | 4 | 4 | 0.205 | 4-5 | | California roach | Yes | 10 | 14 | 8.151 | 10-32 | | Largemouth bass | No | 1 | - | - | - | | Prickly sculpin | Yes | 5 | 5 | 0.787 | 5-7 | | Sacramento sucker | Yes | 8 | 8 | 0.11 | 8-8 | | Tule perch | No | 2 | 2 | 0.384 | 2-7 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval In station CC001 the maximum likelihood iterations provided population estimate higher than what was recorded for California roach. Non-native predatory largemouth bass were observed, but the density was the lowest out all fish species captured. As in Alamitos Creek, tule perch were captured but in low densities. Since this was the first year of sampling within this station, no direct comparisons of densities of *O. mykiss*
over time can occur. As more data is collected in this station trends will be able to be evaluated. # CC002 The station is situated in an urban residential area. A small sakrete structure at an outfall was present. The sampling station was 40 m in length with an average wetted width of 3.0 m and an average depth of 0.3 m. Three habitat types were present within the station: riffle, run, and pool (Figure 42). The riffle habitat made up 42% of the habitat, the run 35%, and a pool the remaining 23%. The primary substrate was cobble with a secondary substrate of silt. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 46. Figure 42: Photos of station CC002, looking upstream (left) and looking downstream (right). Table 46: Station CC002 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | | | | |------------------------------------|----------------------------|------------------|---|---------------------|--------------------|--------------------------|--|--|--|--|--| | Conductivity
(µS/cm) | Tem | perature
(°C) | | red Oxygen
mg/l) | Turbidity
(NTU) | | | | | | | | 477 | : | 16.33 | 38.0 | | | | | | | | | | | Habitat Complexity Scoring | | | | | | | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut Overhangin
Banks Vegetation | | Roots | Artificial
Structures | | | | | | | 0 | 2 | 1 | 2 | 3 | 2 | 1 | | | | | | Three species of fish were captured during the survey: *O. mykiss*, California roach, and Sacramento sucker. The most abundant species encountered was California roach (n=21). Four *O. mykiss* were captured and PIT tagged at this station. Fish captured and associated population estimates are summarized in Table 47. Table 47: Number captured and population estimates at Station CC002 on Calero Creek. | Species | Native | n | N | SE | 95% CI | |-------------------|--------|----|----|--------|--------| | O. mykiss | Yes | 4 | 8 | 17.588 | 4-50 | | California roach | Yes | 21 | 29 | 10.533 | 21-51 | | Sacramento sucker | Yes | 6 | 6 | 1.002 | 6-9 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval In station CC002 the maximum likelihood iterations provided population estimates higher than what was recorded for California roach and *O. mykiss*. All fish species captured were native. Since this was the first year of sampling within this station, no direct comparisons of densities of *O. mykiss* over time can occur. As more data is collected in this station trends will be able to be evaluated. #### CC003 The station is situated in a rural/agricultural area. The sampling station was 40 m in length with an average wetted width of 3.5 m and an average depth of 0.25 m. Two habitat types were present within the station: riffle and glide (Figure 43). The riffle habitat made up 45% of the habitat with the glide making up the remaining 55%. The primary substrate was silt with a secondary substrate of gravel. Results of the water quality monitoring and the ocular assessment of habitat complexity can be seen in Table 48. Equipment failure limited the ability to collect DO and turbidity measurements. Figure 43: Photos of station CC001, looking upstream (left) and looking downstream (right). Table 48: Station CC003 water quality data and ocular estimates of habitat complexity. | Water Quality | | | | | | | | | | | |------------------------------------|----------|--|-------------------|---------------------------|-------|--------------------------|--|--|--|--| | Conductivity
(μS/cm) | Tem | Temperature Dissolved Oxygen Turbidity (°C) (mg/I) (NTU) | | | | - | | | | | | 489 | | 14.0 | <u>-</u> | | | - | | | | | | | Hab | itat Comp | lexity Sco | ring | | | | | | | | Macrophytes/Emergent
Vegetation | Boulders | Woody
Debris | Undercut
Banks | Overhanging
Vegetation | Roots | Artificial
Structures | | | | | | 1 | 0 | 1 | 1 | 3 | 2 | 0 | | | | | Three species of fish were captured during the survey: *O. mykiss,* California roach, and Sacramento sucker. The most abundant species encountered was Sacramento sucker (n=20). Nine *O. mykiss* were captured and PIT tagged at this station. Fish captured and associated population estimates are summarized in Table 49. Table 49: Number captured and population estimates at Station CC002 on Calero Creek. | Species | Native | N | N | SE | 95% CI | |-------------------|--------|----|----|--------|--------| | O. mykiss | Yes | 9 | 16 | 17.311 | 9-53 | | California roach | Yes | 14 | 20 | 10.039 | 14-41 | | Sacramento sucker | Yes | 20 | 24 | 5.268 | 20-35 | n = total number captured, N = calculated population estimate, SE = standard error, CI = confidence interval In station CC003 the maximum likelihood iterations provided population estimates higher than what was recorded for all fish species. All species captured were native. Since this was the first year of sampling within this station, no direct comparisons of densities of *O. mykiss* over time can occur. As more data is collected in this station trends will be able to be evaluated. # Discussion A total of 17 *O. mykiss* were collected in three sampling stations. Fork-lengths ranged from 67 mm to 263 mm (Figure 44). Based on Moyle (2002) growth rates, *O. mykiss* captured in Calero Creek in 2018 were mostly young-of-the-year, but some may have been in their second year. Based on Smith and Leicester (2016) growth rates, nearly all *O. mykiss* captured in 2018 were young-of-the-year. There were two fish collected that were in their third year (Moyle 2002). Calero Creek is supporting multiple age classes of *O. mykiss* and rearing appears to be distributed throughout the system, although higher densities were observed at the most upstream station (Figure 45). Based on the results of the WY 2018 sampling, Calero Creek supports rearing of *O. mykiss*, and had successful reproduction and summer rearing in 2018. Figure 44: Calero Creek *O. mykiss* length histogram. All measurements are in fork-length and binned in 10 mm increments. Figure 45: *O. mykiss* catch per unit effort oriented up- to downstream on Calero Creek. The average catch of *O. mykiss* on Calero Creek in 2018 was 0.14 fish per meter. This is lower than the long-term average catch at repeated sampling stations on Guadalupe Creek (0.17 *O. mykiss* per meter) and Alamitos Creek (0.20 *O. mykiss* per meter). Guadalupe and Alamitos creeks are larger sub-watersheds, so it is expected that they would support higher fish densities. Although Calero Creek had a lower rearing density than Guadalupe Creek and Alamitos Creek, it still had a structured *O. mykiss* population and is contributing the overall production in the system. No blackspot disease was observed on *O. mykiss* in Calero Creek (Figure 46). Figure 46: O. mykiss captured on Calero Creek. # 4. Conclusion In WY2018, juvenile *O. mykiss* were observed in Guadalupe, Alamitos, and Calero Creeks. They were not observed in the Guadalupe River or Los Gatos Creek. Based on historic data, it is not uncommon to not detect *O. mykiss* in the Guadalupe River at all sampling stations, as the occurrence data from 2004-2017 has always been sporadic. However, this is the longest duration (four years) where an *O. mykiss* has not been captured on the Guadalupe River during this monitoring. It is unknown if it is normal for no detections to occur in Los Gatos Creek in some years, as this is the first year of sampling this creek. It is important to remember that electrofishing sampling only allows for specific habitats to be sampled. It is not feasible in deep pools, which may be the preferred habitat for *O. mykiss* inhabiting these two systems. The average densities (fish per meter) and average length of *O. mykiss* detected in Guadalupe, Alamitos, and Calero Creeks can be seen in Table 50. Guadalupe Creek had the highest densities and a smaller average length. The average lengths of *O. mykiss* in Calero and Alamitos Creeks are slightly skewed by the presence of a few larger fish (likely residents), but when the distribution of size is seen in Figure 47 it shows that fish in the young of the year size range are still larger. Based on the size range of fish collected, production and successful summer rearing occurred and multiple age classes were present in the Guadalupe Watershed in 2018. Table 50: 2018 average density and length of O. mykiss captured within Guadalupe, Alamitos, and Calero Creeks. | Sub-Watershed | O. mykiss/meter | Average length | | | | | |-----------------|-----------------|----------------|--|--|--|--| | Guadalupe Creek | 0.275 | 75.8 | | | | | | Calero Creek | 0.142 | 104.2 | | | | | | Alamitos Creek | 0.200 | 105.3 | | | | | Figure 47: O. mykiss size distribution (fork length) for Guadalupe, Calero, and Alamitos Creek sub-watersheds. In addition to *O. mykiss* data, information on the presence of non-native fish species in the Guadalupe Watershed was obtained. A total of seven different species not native to the Guadalupe Watershed were observed: largemouth bass, green sunfish, common carp, goldfish, mosquitofish, Chinook salmon, and tule perch. Of these seven species, only largemouth bass is considered a major predator of juvenile *O. mykiss*, though all others can impact the habitat and natural communities within the system. Los Gatos Creek and the Guadalupe River had the highest percentage of non-native species detected, with the number approaching 10% of captured fish. Guadalupe Creek, Alamitos Creek, and Calero Creek had a low percentage of non-natives, with less than 3% of captured fish being non-native in each of these sub-watersheds. Looking at the Guadalupe Watershed as a whole, the overall percentage of non-native fish is less than 4% of all fish observed (Table 51). Table 51: Total capture of fish
per sub-watershed and percentage of total capture that was non-native species. | Sub-
watershed | Guadalupe
River | • | | Alamitos
Creek | Calero
Creek | Guadalupe
Watershed | | |------------------------|--------------------|------|------|-------------------|-----------------|------------------------|--| | Total Fish
Captured | 194 | 451 | 197 | 542 | 104 | 1488 | | | Percent Non-
native | 9.8% | 2.0% | 9.1% | 0.6% | 2.9% | 3.5% | | Juvenile *O. mykiss* are persisting in the Guadalupe Watershed, with multiple age classes present, and in Guadalupe Creek at levels that would be considered above average. Non-native fish are contributing to a small percentage of the total abundance, with Alamitos Creek having the lowest levels at less than 1.0% non-native species. Since this is the first year of expanded monitoring it is difficult to assess any trends at this time, but as more data become available a better understanding of the Guadalupe Watershed will develop. # **Work Cited** - Columbia Basin Fish and Wildlife Authority (CBFWA) PIT tag Steering Committee. 1999. PIT Tag Marking Procedure Manual, Version 2.0. Available at ftp://ftp.ptagis.org/Documents/PIT Tag Marking Procedures Manual.pdf. - Garcia-Rossi, D. and D. Hedgecock. 2002. Provenance Analysis of Chinook Salmon (*Oncorhynchus tshawytscha*) in the Santa Clara Valley Watershed. Report to the Santa Clara Valley Water District. - Hobbs, J., J. Cook and F. La Luz. 2014. Steelhead Smolt Outmigration and Survival Study: Pond A8, A7 & A5 Entrainment and Escapement: Final Report. Department of Wildlife, Fish and Conservation Biology University of California-Davis. Prepared for National Marine Fisheries Service and the South Bay Salt Pond Recreation Program/Don Edwards San Francisco Bay National Wildlife Refuge. Available at http://www.southbayrestoration.org/documents/technical/Final%20Report%2020144 Guadalupe%20River%20Steelhead%20Smolt%20Outmigration%20Study%20 http://www.southbayrestoration.org/documents/technical/Final%20Report%202014 http://www.southbayrestoration.org/documents/technical/Final%20Report%202014 http://www.southbayrestoration.org/documents/technical/Final%20Report%202014 http://www.southbayrestoration.org/documents/technical/Final%20Report%202014 http://www.southbayrestoration.org/documents/technical/Final%20Report%202014 http://www.southbayrestoration.org/documents/technical/Final%20Report%20204 http://www.southbayrestoration.org/documents/technical/Final%20Report%20204 http://www.southbayrestoration.org/documents/technical/Final%20204 http://www.southba - Hubbs, C. L. 1925. The Life-Cycle and growth of Lampreys. Paper of the Michigan Academy of Sciences, Art and Letters 1:587-603. - Johnson, D. H., B. M. Shrier, J. S. O'Neal, J. A. Knutzen, X. Augerot, T. A. O'Neil, and T. N. Pearsons. 2007. Salmonid Field Protocols Handbook: Techniques for Assessing Status and Trends in Salmon and Trout Populations. Bethesda, Maryland: American Fisheries Society and State of the Salmon. - Ode, P.R. 2007. Standard operating procedures for collecting macroinvertebrate samples and associated physical and chemical data for ambient bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 001. - Schaaf, C. J., S. J. Kelson, S. C. Nusslé, and S. M. Carlson. 2017. Black spot infection in juvenile steelhead trout increases with stream temperature in northern California. Environmental Biology of Fish, 100(6) 733-744. - Santa Clara Valley Water District (SCVWD). 2017. 2016 and 2017 Fish Assemblage Report for the Guadalupe River Watershed Mercury Total Maximum Daily Load. San Jose, CA. Available at https://www.valleywater.org/sites/default/files/B1_2016%20Reservoir%20Assemblage%20Report_FinalV2.pdf. - Santa Clara Valley Water District (SCVWD). 2019. Guadalupe River 2018 Adult Salmonid Migration Monitoring Using the Vaki Riverwatcher Passive Monitoring System: January 30, 2018 May 31, 2018. - SCVWD and Stillwater Sciences. 2013. Water year 2012 final mitigation monitoring report for the Guadalupe River projects, downtown and lower Guadalupe River, San Jose, California. Prepared by the Santa Clara Valley Water District and Stillwater Sciences. San Jose, California. - SCVWD and Stillwater Sciences. 2018. Water year 2017 final mitigation monitoring report for the lower, downtown, and upper Guadalupe River projects, San Jose, California. Prepared by the Santa Clara Valley Water District and Stillwater Sciences. San Jose, California. # **Appendix A** Santa Clara Valley Water District Water Year 2018 *Oncorhynchus mykiss* Tagging Metadata in the Guadalupe River Watershed | Site: | Time Start | Time End | Crew | Temp | Conductivity | FISH ID | Species | Weight (g) | Length (mm) | PIT ID (Decimal) | Genetics (Y/N) | Scales (Y/N) | Tagger | Fish Condition/Comments | |-------|------------|----------|-----------------------|-------|--------------|-------------|-----------|------------|-------------|------------------|----------------|--------------|--------|-------------------------| | GC006 | 9:15 | 10:45 | JW,LL, JN, CL, CG, SG | 15.23 | 411 | 2018GCRK001 | O. mykiss | 3.53 | 60 | NA | Υ | N | NA | | | GC006 | 9:15 | 10:45 | JW,LL, JN, CL, CG, SG | 15.23 | 411 | 2018GCRK002 | O. mykiss | 7.81 | 83 | 900.226000319227 | у | N | LL | | | GC006 | 9:15 | 10:45 | JW,LL, JN, CL, CG, SG | 15.23 | 411 | 2018GCRK003 | O. mykiss | 9.25 | 87 | 900.226000319276 | у | N | LL | | | GC006 | 9:15 | 10:45 | JW,LL, JN, CL, CG, SG | 15.23 | 411 | 2018GCRK004 | O. mykiss | 14.28 | 106 | 900.226000319293 | у | N | LL | | | GC006 | 9:15 | 10:45 | JW,LL, JN, CL, CG, SG | 14.51 | 411 | 2018GCRK005 | O. mykiss | 2.35 | 58 | NA | у | N | NA | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK006 | O. mykiss | 4.75 | 67 | 900.226000319318 | У | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK007 | O. mykiss | 4.62 | 72 | 900.226000319305 | v | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK008 | O. mykiss | 4.01 | 65 | NA | v | N | NA | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK009 | O. mykiss | 3.72 | 66 | 900.226000319334 | v | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK010 | O. mykiss | 3.76 | 63 | NA | v | N | NA | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK011 | O. mykiss | 6.37 | 72 | 900.226000319341 | v | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK012 | O. mykiss | 3.58 | 65 | 900.226000319308 | v | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK013 | O. mykiss | 31.33 | 138 | 900.226000319389 | v | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK014 | O. mykiss | 6.82 | 81 | 900.226000319385 | v | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK015 | O. mykiss | 4.58 | 66 | 900.226000319338 | V | N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK016 | O. mykiss | 4.45 | 64 | NA | V | N | NA | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK017 | O. mykiss | 3.42 | 57 | NA | y
v | N | NA | | | GC005 | 11:33 | 13:00 | | 14.51 | 427 | 2018GCRK018 | O. mykiss | 3.09 | 56 | NA | y
 | N | NA | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK019 | O. mykiss | 5.32 | 74 | 900.226000319324 | y
 | N N | LL | | | GC005 | 11:33 | 13:00 | | 14.51 | 427 | 2018GCRK020 | O. mykiss | 3.84 | 62 | NA | у | N N | NA | | | GC005 | 11:33 | 13:00 | | 14.51 | 427 | 2018GCRK021 | O. mykiss | 6.93 | 86 | 900.226000319364 | у | N N | LL | | | GC005 | 11:33 | 13:00 | JW,LL, JN, CL, CG, SG | 14.51 | 427 | 2018GCRK022 | O. mykiss | 5.32 | 72 | NA | У | N | NA | | | GC004 | 13:30 | 15:50 | JW,LL, JN, CL, CG, SG | 16.49 | 402 | 2018GCRK023 | O. mykiss | 3.93 | 62 | NA | у | N | NA | | | GC004 | 13:30 | 15:50 | | 16.49 | 402 | 2018GCRK024 | O. mykiss | 6.66 | 79 | 900.226000319345 | y | N | LL | | | GC004 | 13:30 | 15:50 | JW,LL, JN, CL, CG, SG | 16.49 | 402 | 2018GCRK025 | O. mykiss | 3.08 | 57 | NA | y | N | NA | | | GC004 | 13:30 | 15:50 | | 16.49 | 402 | 2018GCRK026 | O. mykiss | 3.53 | 58 | NA | V | N | NA | | | GC004 | 13:30 | 15:50 | JW,LL, JN, CL, CG, SG | 16.49 | 402 | 2018GCRK027 | O. mykiss | 8.33 | 84 | 900.226000319358 | V | N | LL | scarred | | GC004 | 13:30 | 15:50 | JW,LL, JN, CL, CG, SG | 16.49 | 402 | 2018GCRK028 | O. mykiss | 6.12 | 76 | 900.226000319329 | v | N | LL | | | GC004 | 13:30 | 15:50 | | 16.49 | 402 | 2018GCRK029 | O. mykiss | 4.97 | 70 | 900.226000319351 | V | N | LL | | | GC004 | 13:30 | 15:50 | JW,LL, JN, CL, CG, SG | 16.49 | 402 | 2018GCRK030 | O. mykiss | 3.28 | 59 | NA | v | N | NA | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK031 | O. mykiss | 3.23 | 61
| NA | v | N | NA | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK032 | O. mykiss | 5.62 | 75 | 900.226000319346 | Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK033 | O. mykiss | 3.82 | 62 | NA | Υ | N | NA | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK034 | O. mykiss | 4.22 | 66 | 900.226000319394 | Υ | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK035 | O. mykiss | 6.02 | 79 | 900.226000319386 | Υ | N | LL | minor blackspot | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK036 | O. mykiss | 4.36 | 62 | NA | Υ | N | NA | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK037 | O. mykiss | 5.9 | 77 | 900.226000319340 | Υ | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK038 | O. mykiss | 4.52 | 70 | 900.226000319317 | Υ | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK039 | O. mykiss | 5.14 | 72 | 900.226000319337 | Υ | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK040 | O. mykiss | 8.05 | 86 | 900.226000319344 | Υ | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK041 | O. mykiss | 4.23 | 68 | 900.226000319330 | Υ | N | LL | minor blackspot | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK042 | O. mykiss | 6.06 | 75 | 900.226000319307 | Υ | N | JW | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK043 | O. mykiss | 4.08 | 67 | 900.226000319309 | Υ | N | JW | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK044 | O. mykiss | 3.83 | 65 | 900.226000319333 | Υ | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK045 | O muliina | | | 900.226000319361 y | | | bloodor | |-------|---------|----------|--------------------------------|-------|-----|--------------------------|-----------|-------|-----|-------------------------------|------|----|-----------------| | - | | | | | _ | | O. mykiss | 5.66 | 74 | l' | N | LL | bleeder | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK046 | O. mykiss | 96.04 | 155 | 900.228000613702 Y | N | LL | minor blackspot | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK047 | O. mykiss | 4.61 | 65 | 900.226000319381 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK048 | O. mykiss | 6.62 | 76 | 900.226000319342 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK049 | O. mykiss | 4.35 | 66 | 900.226000319399 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK050 | O. mykiss | 4.63 | 70 | 900.226000319377 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK051 | O. mykiss | 5.68 | 72 | 900.226000319371 _Y | N | LL | black spot | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK052 | O. mykiss | 6.23 | 75 | 900.226000319395 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK053 | O. mykiss | 4.95 | 69 | 900.226000319325 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK054 | O. mykiss | 6.2 | 78 | 900.226000319356 Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK055 | O. mykiss | 6.22 | 79 | 900.226000319374 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK056 | O. mykiss | 4.36 | 69 | 900.226000319379 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK057 | O. mykiss | 4.53 | 67 | 900.226000319354 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK058 | O. mykiss | 18.15 | 112 | 900.226000319328 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK059 | O. mykiss | 3.85 | 68 | 900.226000319393 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK060 | O. mykiss | 5.05 | 79 | 900.226000319327 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK061 | O. mykiss | 5.23 | 74 | 900.226000319362 _Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK062 | O. mykiss | 11.22 | 90 | 900.226000319304 Y | N | LL | | | GC003 | 9:50 | 12:19 | JW,LL, JN, CL, CG | 13.07 | 445 | 2018GCRK063 | O. mykiss | 5.31 | 74 | 900.226000319398 _Y | N | LL | 1 blackspot | | GC001 | 8:19 AM | 9:30 | CL, JW, SG, LL | 15.82 | 482 | 2018GCRK064 | O. mykiss | 12.4 | 95 | 900.226000319294 _Y | N | JW | | | GC002 | 9:45 AM | 10:30 | CL, JW, SG, LL | 17.6 | 482 | 2018GCRK065 | O. mykiss | 8.7 | 87 | 900.226000319214 _Y | N | LL | | | GC002 | 9:45 AM | 10:30 | CL, JW, SG, LL | 17.6 | 482 | 2018GCRK066 | O. mykiss | 18.2 | 116 | 900.226000319278 _Y | N | CL | | | CC002 | 7:36 AM | 9:15 | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.33 | 477 | 2018CALE001 | O. mykiss | 215.3 | 263 | 900.228000613704 _Y | N | LL | | | CC002 | 7:36 AM | 9:15 | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.33 | 477 | 2018CALE002 | O. mykiss | 7.5 | 82 | 900.226000319280 _Y | N | LL | | | CC002 | 7:36 AM | 9:15 | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.33 | 477 | 2018CALE003 | O. mykiss | 125.2 | 216 | 900.228000613705 _Y | N | LL | | | CC002 | 7:36 AM | 9:15 | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.33 | 477 | 2018CALE004 | O. mykiss | 14.3 | 109 | 900.226000319268 _Y | N | ш | | | CC001 | 9:41 AM | 11:10 AM | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.3 | 547 | 2018CALE005 | O. mykiss | 11.5 | 95 | 900.226000319336 _Y | N | LL | | | CC001 | 9:41 AM | 11:10 AM | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.3 | 547 | 2018CALE006 | O. mykiss | 7.3 | 82 | 900.226000319302 _Y | N | LL | | | CC001 | 9:41 AM | 11:10 AM | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.3 | 547 | 2018CALE007 | O. mykiss | 10.1 | 89 | 900.226000319332 _Y | N | LL | | | CC001 | 9:41 AM | 11:10 AM | JN, JW, CL, LL, NJ, KJ, PS, SG | 16.5 | 547 | 2018CALE008 | O. mykiss | 5.2 | 67 | 900.226000319373 _Y | N | LL | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE009 | O. mykiss | 9.3 | 84 | 900.226000319357 _Y | N | LL | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE010 | O. mykiss | 7.8 | 84 | 900.226000319347 _Y | N | LL | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE011 | O. mykiss | 5.4 | 75 | 900.226000319323 _Y | N | LL | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE012 | O. mykiss | 10.4 | 86 | 900.226000319300 _Y | N | LL | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE013 | O. mykiss | 8.5 | 85 | 900.226000319231 _Y | N | LL | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE014 | O. mykiss | 12.5 | 94 | 900.226000319244 _Y | N | П | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE015 | O. mykiss | 8.3 | 82 | 900.226000319287 _Y | N | 11 | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE016 | O. mykiss | 10.2 | 93 | 900.226000319230 y | N | 11 | | | CC003 | 7:21 AM | 8:45 | JW,CL, LL, KJ, JT, SG | 14 | 489 | 2018CALE017 | O. mykiss | 9.4 | 86 | 900.226000319212 _Y | N | 11 | | | AC004 | 8:30 | 10:10 | CL, JW, SG, DT, LL, CG | 16.50 | 390 | 2018ALM029 | O. mykiss | 5.35 | 68 | 900.226000319284 y | N | LL | | | AC004 | 8:30 | 10:10 | CL, JW, SG, DT, LL, CG | 16.50 | 390 | 2018ALM030 | O. mykiss | 4.23 | 66 | 900.226000319260 y | N | LL | | | AC004 | 8:30 | 10:10 | CL, JW, SG, DT, LL, CG | 16.50 | 390 | 2018ALM031 | O. mykiss | 4.35 | 65 | 900.226000319291 y | N N | LL | | | AC004 | 8:30 | 10:10 | CL, JW, SG, DT, LL, CG | 16.50 | 390 | 2018ALM032 | O. mykiss | 3.25 | 65 | 900.226000319291 y | IN . | 11 | | | AC004 | 8:30 | 10:10 | CL, JW, SG, DT, LL, CG | 16.50 | 390 | 2018ALM033 | O. mykiss | 4.86 | 69 | 900.226000319292 y | IN . | 11 | | | AC004 | 8:30 | 10:10 | | 16.50 | 390 | | | 3.02 | 60 | 900.226000319293 γ
NA v | IN | 11 | | | AC004 | 8:30 | 10:10 | CL, JW, SG, DT, LL, CG | 16.50 | 390 | 2018ALM034
2018ALM035 | O. mykiss | | 125 | 900.226000319250 _V | N | | Plackenet | | ACUU4 | 6:30 | 10:10 | CL, JW, SG, DT, LL, CG | 10.50 | 590 | ZU18ALMU35 | O. mykiss | 20.6 | 125 | ann·55ρηηη31a52η λ | N | JW | Blackspot | | AC004 | 8:30 | 10:10 | CL, JW, SG, DT, LL, CG | 16.50 | 390 | 2018ALM036 | O. mykiss | 3.06 | 60 | NA | v | N. | 1347 | | |--------------------|-------|----------|--|-------|-----|--------------------------|-----------|-------|-----|------------------|----------|-----|--------|----------------------------| | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM037 | O. mykiss | 17.5 | | 900.226000319246 | Y | N | JW | Blackspot and scar on side | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM038 | O. mykiss | 36.5 | 145 | 900.226000319258 | Y | N N | | severe blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM039 | O. mykiss | 14.8 | 79 | 900.226000319263 | Υ | N | | Blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM040 | O. mykiss | 24.9 | | 900.226000319201 | Υ | N | LL | Blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM041 | O. mykiss | | | 900.226000319201 | Υ | N | CL | Blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | | | 18.6 | | 900.226000319218 | Υ | N | JW | | | - | | | | | | 2018ALM042 | O. mykiss | | | | Υ | N | JW | Blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM043 | O. mykiss | 20.2 | 111 | 900.226000319200 | Υ | N | JW | Blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM044 | O. mykiss | 19 | 108 | 900.226000319311 | Υ | N | JW | Blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM045 | O. mykiss | 42.3 | 146 | 900.226000319257 | Υ | N
 LL | Blackspot | | AC003 | 11:30 | 13:03 | CL, JW, SG, DT, LL, CG | 15.38 | 401 | 2018ALM046 | O. mykiss | 16.8 | | 900.226000319290 | Υ | N | LL | Blackspot | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM047 | O. mykiss | | 84 | 900.226000319343 | Υ | N | LL | Minor blackspot | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM048 | O. mykiss | | 98 | 900.226000319306 | Υ | N | LL | Minor blackspot | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM049 | O. mykiss | 13 | 100 | 900.226000319349 | Υ | N | LL | | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM050 | O. mykiss | 9.6 | 91 | 900.226000319312 | Υ | N | LL | | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM051 | O. mykiss | 14.1 | | 900.226000319315 | Υ | N | LL | | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM052 | O. mykiss | 12.8 | 103 | 900.226000319382 | Υ | N | LL | | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM053 | O. mykiss | 10 | 91 | 900.226000319365 | Υ | N | LL | | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM054 | O. mykiss | 445 | 345 | 900.228000613703 | Υ | N | LL | Blackspot | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM055 | O. mykiss | 9.4 | 92 | 900.226000319363 | Υ | N | LL | | | AC002 | 8:13 | 9:38 AM | CL, JW, LL, SG, KJ | 17.06 | 462 | 2018ALM056 | O. mykiss | 10.2 | 90 | 900.226000319390 | Υ | N | LL | | | AC001 | 10:30 | 12:02 PM | CL, JW, LL, SG, KJ | 16.89 | 462 | 2018ALM057 | O. mykiss | 23 | 119 | 900.226000319378 | Υ | N | CL | | | AC001 | 10:30 | 12:02 PM | CL, JW, LL, SG, KJ | 16.89 | 462 | 2018ALM058 | O. mykiss | 25.1 | 115 | 900.226000319396 | Υ | N | CL | | | AC001 | 10:30 | 12:02 PM | CL, JW, LL, SG, KJ | 16.89 | 462 | 2018ALM059 | O. mykiss | 20.8 | 117 | 900.226000319368 | Υ | N | LL | Blackspot | | AC001 | 10:30 | 12:02 PM | CL, JW, LL, SG, KJ | 16.89 | 462 | 2018ALM060 | O. mykiss | 28.2 | 129 | 900.226000319380 | Υ | N | CL | Minor blackspot | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM001 | O. mykiss | 43.06 | 146 | 900.226000319370 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM002 | O. mykiss | 15.14 | 111 | 900.226000319353 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM003 | O. mykiss | - | 199 | 900.226000319320 | Υ | N | LL | Blackspot | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM004 | O. mykiss | 17.2 | 109 | 900.226000319322 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM005 | O. mykiss | 13.3 | 102 | 900.226000319339 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM006 | O. mykiss | 15.09 | 107 | 900.226000319313 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM007 | O. mykiss | 8.33 | 89 | 900.226000319367 | Y | N | 11 | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM008 | O. mykiss | - | 248 | 900.226000319355 | N | N | 11 | Blackspot | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM009 | O. mykiss | 12.92 | 103 | 900.226000319350 | v | N | 11 | · | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM010 | O. mykiss | 21.42 | 119 | 900.226000319366 | v | N | 11 | | | — | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM011 | O. mykiss | 19.34 | 117 | 900.226000319375 | v | N | JW | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM012 | O. mykiss | 16.51 | 111 | 900.226000319326 | <u> </u> | N N | J VV | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | | 2018ALM013 | O. mykiss | 23.78 | 122 | 900.226000319387 | Υ | N | LL | Blackspot | | - | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM014 | O. mykiss | 26.74 | 132 | 900.226000319376 | Υ | N | JW | · | | | 10:22 | 12:00 PM | | 15.9 | 545 | | | 30.42 | 141 | 900.226000319370 | Υ | N | JW | Blackspot | | Mazzone
Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN
JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM015
2018ALM016 | O. mykiss | 32.1 | 136 | 900.226000319319 | Υ | N | LL
 | Blackspot | | - | | | | | 545 | | O. mykiss | | | | Υ | N | LL | | | | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM017 | O. mykiss | 13.3 | 103 | 900.226000319314 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM018 | O. mykiss | 32.7 | 138 | 900.226000319391 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM019 | O. mykiss | 25.26 | | 900.226000319310 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM020 | O. mykiss | 11.5 | 97 | 900.226000319372 | Υ | N | LL | | | Mazzone | 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM021 | O. mykiss | 81.27 | 186 | 900.226000319301 | Υ | N | LL | | | Mazzo | e 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM022 | O. mykiss | 19.01 | 117 | 900.226000319384 | Υ | N | LL | | |-------|---------|----------|--------------------|------|-----|------------|-----------|-------|-----|------------------|---|---|----|--| | Mazzo | e 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM023 | O. mykiss | 14.39 | 104 | 900.226000319316 | Υ | N | LL | | | Mazzo | e 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM024 | O. mykiss | 11.97 | 102 | 900.226000319397 | Υ | N | LL | | | Mazzo | e 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM025 | O. mykiss | 10 | 95 | 900.226000319388 | N | N | LL | | | Mazzo | e 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM026 | O. mykiss | 14.48 | 106 | 900.226000319360 | N | N | LL | | | Mazzo | e 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM027 | O. mykiss | 18.58 | 115 | 900.226000319321 | Υ | N | LL | | | Mazzo | e 10:22 | 12:00 PM | JW, LL, CV, SG, JN | 15.9 | 545 | 2018ALM028 | O. mykiss | 23.03 | 122 | 900.226000319348 | Υ | N | LL | |