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Abstract The 2014 Working Group on California Earthquake Probabilities
(WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform
California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-in-
dependent model published previously, renewal models are utilized to represent elastic-
rebound-implied probabilities. A new methodology has been developed that solves
applicability issues in the previous approach for unsegmented models. The new meth-
odology also supports magnitude-dependent aperiodicity and accounts for the historic
open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties
are represented with a logic tree, producing 5760 different forecasts. Results for a
variety of evaluation metrics are presented, including logic-tree sensitivity analyses
and comparisons to the previous model (UCERF2). For 30 yr M ≥6:7 probabilities,
the most significant changes from UCERF2 are a threefold increase on the Calaveras
fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to
differences in the time-independent models (e.g., fault-slip rates), with relaxation of
segmentation and inclusion of multifault ruptures being particularly influential. In
fact, some UCERF2 faults were simply too long to produce M 6.7 size events given
the segmentation assumptions in that study. Probability model differences are also
influential, with the implied gains (relative to a Poisson model) being generally higher
in UCERF3. Accounting for the historic open interval is one reason. Another is an
effective 27% increase in the total elastic-rebound-model weight. The exact factors
influencing differences between UCERF2 and UCERF3, as well as the relative im-
portance of logic-tree branches, vary throughout the region and depend on the evalu-
ation metric of interest. For example, M ≥6:7 probabilities may not be a good proxy
for other hazard or loss measures. This sensitivity, coupled with the approximate nature
of the model and known limitations, means the applicability of UCERF3 should be
evaluated on a case-by-case basis.

Introduction

This study provides time-dependent, elastic-rebound-
motivated probabilities for the third Uniform California Earth-
quake Rupture Forecast (UCERF3). This model has been de-
veloped by the 2014 Working Group on California Earthquake
Probabilities, referred to hereafter as WGCEP 2014, the results
of which are represented by this and other publications cited
below. As with the previous UCERF2 model (WGCEP, 2007,
also published as Field et al., 2009), the purpose of UCERF3 is
to provide consensus estimates of the magnitude, location, and
likelihood of potentially damaging earthquake ruptures in the
greater California region (Fig. 1). As such, this earthquake rup-
ture forecast constitutes one of the two main model compo-

nents used in seismic-hazard and risk assessment (the other
model provides ground-shaking estimates for each rupture).
The time-dependent model presented here builds on the
UCERF3 time-independent model, the latter being fully de-
scribed in a previous report (Field et al., 2013), including
20 appendixes that stand alone in terms of relevance beyond
UCERF3. That document is referred to hereafter as the
UCERF3-TI report (TI stands for time independent) and is also
where further details on the motivation, history, participation,
and review process for the overall UCERF3 project can be
found. The UCERF3-TI main report (excluding appendixes) is
also published as Field et al. (2014).
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Every forecast model is an approximation of the natural
system, and we acknowledge that earthquakes exhibit behav-
ioral complexities that are beyond our current understanding.
Given the infrequency of large damaging earthquakes, there
may also be important features we have not yet observed, as
many earthquakes continue to surprise us. Against this back-
drop, the present study is an attempt to represent the influ-
ence of the Reid (1911) elastic-rebound theory, which posits
rupture probabilities drop on a fault after experiencing a large
rupture and then build back up as tectonic stresses reaccu-
mulate with time. We understand there are other processes at
work, the most obvious of which is spatiotemporal clustering
(e.g., aftershock triggering). There might also be longer-term
effects, such as mode switching (Dahmen et al., 1998; Ben-
Zion et al., 1999; Zaliapin et al., 2003; Ben-Zion, 2008) or
super cycles (Grant and Sieh, 1994; Weldon et al., 2004;
Dolan et al., 2007; Goldfinger et al., 2013; Rockwell et al.,
2014; Schwartz et al., 2014). We do not attempt to model
these other processes here. We also acknowledge data lim-
itations have prevented a definitive confirmation of Reid’s
elastic-rebound hypothesis, at least for large, damaging
earthquakes. The model presented here therefore represents
our best estimate of the elastic-rebound component of the

system, under the assumption such behavior exists and
can be meaningfully isolated from other time dependencies.

Similar to its predecessors, UCERF3 is composed of the
four main model components shown in Figure 2. The fault
model gives the physical geometry of the larger, known, and
more active faults; the deformation model gives slip-rate and
creep estimates for each fault section, as well as deformation
rates off the modeled faults (if available); the earthquake rate
model gives the long-term rate of all earthquakes throughout
the region (at some level of discretization); and the earth-
quake probability model gives the likelihood that each event
will occur during a specified time span, perhaps conditioned
on additional information such as date of last event. Alter-
native versions of each component are defined in order to
represent the epistemic uncertainties from incomplete knowl-
edge of how the earthquake system works. Except where oth-
erwise noted, all magnitudes referenced here as M represent
moment magnitude.

The UCERF3 Time-Independent Model

The UCERF3 fault models, deformation models, and
earthquake rate models collectively represent the complete
time-independent model and are fully documented in the

Figure 1. Three-dimensional perspective view of the third Uniform California Earthquake Rupture Forecast (UCERF3). The small black
rectangular elements represent the 2606 fault subsections used in the forecast (for one of the two fault models, FM3.1). The along-strike length
of each subsection is equal to half the down-dip width, and supraseismogenic ruptures are defined as two or more contiguous subsections. Colors
depict the mean participation probability, the likelihood that each point will experience one or more M ≥6:7 earthquakes in the 30 years
following 2014 (for which participation means that some point on the rupture surface is within about 5 km). The entire colored area represents
the UCERF model region, which comprises California and a buffer zone (referred to as All CA in the text). The white boxes define the San
Francisco (SF) Bay and Los Angeles (LA) regions, respectively, and the white line crossing the state is our definition of northern versus southern
California (referred to as N. CA and S. CA, respectively, in the text). The influence of the Cascadia megathrust is not shown on this map.
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UCERF3-TI report (Field et al., 2013). Two primary achieve-
ments for UCERF3-TI have been the relaxation of fault-
segmentation assumptions and the inclusion of multifault rup-
tures, both identified as modeling limitations in the UCERF2
report. These were achieved using a system-level grand inver-
sion, in which the rates of all earthquakes are solved for simul-
taneously from a variety of data constraints. The inverse
problem is large and inherently underdetermined; therefore,
a range of models was sampled using an efficient simulated
annealing algorithm (appendix N of the UCERF3-TI report
[Page et al., 2013]; also published as Page et al., 2014). This
new approach succeeded in removing the apparent overpredic-
tion of M 6.5–7 earthquake rates in UCERF2 and enabled
inclusion of the types of multifault ruptures seen in nature.

UCERF3 defines three types of ruptures: (1) supraseismo-
genic on-fault ruptures (modeled with the rectangular elements
shown in Fig. 1); (2) subseismogenic on-fault ruptures; and
(3) off-fault ruptures (not associated with explicitly modeled
faults). The latter two are represented with a geographic grid
of magnitude–frequency distributions and are therefore some-
times referred to together as “gridded seismicity.” Supraseismo-
genic means the square root of the rupture area is greater than
the average down-dip width of the fault.

Epistemic uncertainties in the time-independent model
are represented using 1440 alternative logic-tree branches
(Fig. 3), reflecting a considerable expansion relative to
UCERF2. For example, three of the new deformation models
are based on kinematically consistent inversions of geodetic
and geologic data, which not only provide a wider range of
fault-slip rates, but also values for faults that were previously
excluded due to lack of geologic data. A detailed presentation
of each logic-tree branch is given in the UCERF3-TI report;
here, we quantify which are most influential in terms of the
various hazard metrics introduced below. The Figure 3 caption
also gives a brief explanation of each branch.

The consensus of the 2014 Working Group is that
UCERF3-TI represents a significant improvement over
UCERF2. However, as described in the UCERF3-TI report,
the model is still only an approximation of the natural sys-
tem, and there may be areas where additional site-specific
analyses are in order.

The UCERF3 Time-Dependent Model

This study addresses the fourth model component shown
in Figure 2, the time-dependent model. In particular, we use

renewal models to quantify the earthquake probabilities
implied by elastic-rebound theory. Renewal models have been
used for this purpose by all previous WGCEPs (1988, 1990,
1995, 2003, and 2007), with methodological improvements
being made in each successive effort (e.g., see Field, 2007,
for a review of those through WGCEP 2003).

In the context of UCERF2, WGCEP (2007) noted a self-
consistency problem with their algorithm for computing elas-
tic-rebound-based earthquake probabilities. In particular,
Monte Carlo simulations revealed the following: (1) the dis-
tribution of recurrence intervals produced by the model were
not equal to that assumed in the first place; (2) the simulated
rates of events were biased high compared to those imposed;
and (3) the final segment probabilities, aggregated from rup-
ture probabilities, were not the same as those computed else-
where in the algorithm (i.e., from the mean recurrence interval
and time since the last event). For completely segmented mod-
els (WGCEP 1988 and 1990), where earthquakes always rup-
ture the exact same stretch of fault with zero overlap among
neighboring events, these issues are nonexistent. For seg-
mented models that allow both single and multisegment rup-
tures (WGCEP 1995, 2003, and 2007), these issues have a
minor influence on results compared to overall uncertainties.
This, together with the lack of an alternative, is why the former
elastic-rebound algorithm was accepted as the best available
science in UCERF2. Unfortunately, these self-consistency
problems worsen as segmentation assumptions are relaxed,
so they needed to be addressed in UCERF3.

For UCERF3, segmentation has been relaxed by subdi-
viding the main fault sections into many more, shorter-length
subsections (Fig. 1) and by including ruptures on every con-
tiguous set of subsections that pass some plausibility criteria
(appendix T of the UCERF3-TI report by Milner et al.,
2013). The result is a much larger set of possible ruptures,
with many more overlapping possibilities at each point in the
fault system. For example, UCERF2 had only six different
size ruptures passing through the Peninsula section of the San
Andreas fault (when measured by area, and for the segmented
model, which was given 90% weight), whereas UCERF3 has
more than 49,000.

Using Monte Carlo simulations, Field (2015) has
quantified how the removal of segmentation in UCERF3
exacerbates the self-consistency issues associated with the
elastic-rebound probability calculations used in UCERF2.
That study also presents a new, alternative approach that is
less biased, more self-consistent, and in general agreement

Figure 2. The four main model components used in the UCERF3 framework.
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with the elastic-rebound predictability implied by physics-
based earthquake simulators. Given these and others advan-
tages discussed in the Methodology section below, this new
algorithm has been adopted for use in UCERF3.

Forthcoming Spatiotemporal Component and
Operational Earthquake Forecasting

An important goal of UCERF3 has been the inclusion of
spatiotemporal clustering to model aftershocks and triggered

events, the practical importance of which was exemplified by
the 2011M 6.3 Christchurch, New Zealand, earthquake (e.g.,
Kaiser et al., 2012). Ultimately, this version of UCERF3
could form the basis of an operational earthquake forecast
for California, which by definition would include both
authoritative, real-time forecasts and official protocols for
communicating implications to the public (Jordan and Jones,
2010; Jordan et al., 2011). Operational earthquake forecasting
(OEF) is now listed as one of the strategic-action priorities of
the U.S. Geological Survey (USGS), with a goal of providing

Figure 3. UCERF3 logic-tree branches, with weights given in parentheses. The branches are organized by the basic model components in
Figure 2: fault models (green), deformation models (light purple), earthquake rate models (blue), and probability models (pink). UCERF3 has
a total of 5760 logic-tree branches. The fault models represent alternative representations for several fault sections. The deformation models
provide alternative fault-slip rate estimates, as well as the degree of aseismicity on each fault section. The scaling relationships are used to
compute rupture magnitudes (from the area) and to define the mean slip for each rupture. The slip-along rupture models define the dis-
tribution of slip along strike (when averaged over many rupture occurrences). Total M ≥5 event rate specifies the total yearly rate of events
throughout the region,Moff�fault

max represents the largest magnitude for events occurring off the modeled faults, and Off-Fault Spatial Seis PDF
specifies how the off-fault seismicity rates vary across the region. The probability model options are discussed in the text and in Table 1. More
details on all but the probability model branches can be found in the UCERF3-TI report (Field et al., 2014).
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“effective situational awareness” to emergency managers
during hazardous events (Holmes et al., 2013, pp. 32–33).

A prototype spatiotemporal clustering component has
been implemented based on the epidemic-type aftershocks se-
quence (ETAS) model (Ogata, 1988). The primary challenge
has been to merge ETAS, which is a point-process model, into
the finite-fault framework of UCERF3. Preliminary studies, in
which the spatiotemporal algorithm was applied to UCERF2,
identified two significant issues (Field, 2011, 2012). First, the
underlying time-independent model needs to be more consis-
tent with a Gutenberg–Richter distribution over aftershock-
zone-size areas, as the strongly characteristic magnitude–
frequency distributions in UCERF2 lead to runaway (never-
ending) sequences. The inversion approach of UCERF3
appears to have at least mitigated this problem by including
multifault ruptures and imposing a regional Gutenberg–
Richter constraint. Second, spatiotemporal models based on
observed triggering statistics require some form of elastic
relaxation, otherwise a large triggered event is more likely to
rerupture the exact same mainshock surface rather than an ad-
jacent or separate fault, at least more so than is seen in nature.
The elastic-rebound methodology presented here represents a
promising solution to this problem, so further development of
the spatiotemporal component has awaited its completion.
However, full operationalization of UCERF3 will require
solving other challenges as well, such as quantifying and deal-
ing with network data quality issues in real time and distilling
results into manageable and appropriate forms for different
potential user groups.

Empirical Model

Both UCERF2 (WGCEP, 2007) and the previous model
(WGCEP, 2003) included a so-called empirical model
among the time-dependent options. The rationale for this was
inferred from differences between more recent (post-1906 or
later) and longer-term seismicity rates (post-1850). For ex-
ample, WGCEP (2003) inferred an approximate 50% rate
reduction in the San Francisco Bay area, which they suspected
might have resulted from a stress shadow (Harris and Simp-
son, 1998) cast by the great 1906 earthquake. However, the
stress-change models considered by WGCEP (2003) had dif-
ficulty producing this behavior, which motivated them to cre-
ate the empirical rate-change model. Felzer (2007) developed
a statewide version of this model for UCERF2 and found
recent rate reductions in every area of California that had ad-
equate data. In particular, the rate reduction for Los Angeles
was about equal to that in San Francisco, calling into question
the stress shadow interpretation. Although WGCEP (2007)
confessed to lacking a preferred physical interpretation, they
nevertheless applied the model in UCERF2with a 30% branch
weight. In this empirical model, the long-term rate of each
fault-based rupture was reduced by the inferred rate reduction
before computing a Poisson probability.

The empirical model has been updated for UCERF3
(Felzer, 2013; appendix Q of the UCERF3-TI report), with

more attention being placed on possible artifacts due to data
limitations and inadequate aftershock declustering. Sta-
tistically significant rate reductions are now found in only
three, relatively small regions (around San Francisco, Santa
Barbara, and the Imperial Valley). The physical cause re-
mains elusive, and it is possible that the reductions are arti-
facts of some data limitation. Furthermore, it is possible that
the time-dependent components in UCERF3 might produce
such anomalies. Consequently, there was virtually no support
within the present working group for including an empirical
model in UCERF3, at least not until the forthcoming spatio-
temporal component is shown to be inconsistent with the
observations. A further complication is that any empirical
model should probably depend on the forecast duration,
which has not yet been fully considered. Given the alterna-
tive values of the total M ≥5 event rate (logic-tree branch in
Fig. 3), UCERF3 is consistent with recent seismicity rates, at
least on a statewide basis (Felzer, 2013).

Methodology

We utilize a new procedure for computing elastic-
rebound-based earthquake probabilities that largely solves the
self-consistency and bias issues noted in the Introduction. Full
details are given by Field (2015), including a comparison to
the previous methodology, an analysis of what current physics-
based earthquake simulators imply regarding elastic-rebound
predictability, and Monte Carlo simulation tests of the new al-
gorithm. We summarize implementation details here, includ-
ing how to handle the fact that we lack date-of-last-event data
on most faults. As with previous WGCEPs, the methodology
is applicable only to large, fault-based ruptures and is therefore
not applied to the gridded-seismicity sources.

The new approach, like its predecessor, assumes the
availability of a long-term earthquake-rate model, which
gives the frequency of all possible supraseismogenic ruptures
on a fault or fault system, where the latter is represented by
some number of fault subsections (or segments, as the case
may be). Figure 1 shows the 2606 subsections for one of the
two UCERF3 fault models. From this long-term rate model,
the frequency of supraseismogenic events on each subsection
can be computed as

fs �
XR
r�1

Gsrfr; �1�

in which fs is the frequency of the sth subsection, fr is the
long-term rate of the rth rupture, and the matrixGsr indicates
which subsections are utilized by each rupture (values are 1
or 0). The mean recurrence interval of each subsection (μs) is
then computed as

μs �
1

fs
: �2�

Aftershocks are included in these rates, although this is not
very important with respect to the implied probability gains
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discussed below because these constitute only 3% of the mo-
ment rate for supraseismogenic events in UCERF3-TI.

The previous approach (WGCEP, 2003, 2007) involves
computing a conditional probability for each subsection using
this recurrence interval (μs), the time since the last event on
the subsection (Ts), and an assumed aperiodicity (α, equal to
the standard deviation of recurrence intervals divided by the
mean, and sometimes referred to as the coefficient of varia-
tion). The Brownian passage time (BPT) renewal model (Mat-
thews et al., 2002) was used for the calculations, although
results are nearly identical for a lognormal distribution (as ap-
plied in WGCEP 1988, 1990, and 1995). The probability for
each rupture was then computed by aggregating the associated
subsection probabilities (essentially multiplying the long-term
rupture rate by a weighted average of the subsection probabil-
ity gains).

To eliminate the self-consistency issues noted above, the
new approach averages subsection recurrence intervals and
dates of last event, rather than subsection probabilities (Field,
2015). Specifically, we first assume a given rupture will be
the next event to occur, and then compute the expected re-
currence interval as a weighted average of the long-term re-
currence intervals of the subsections involved:

μcondr �
P

μsAsP
As

; �3�

in which the weights are subsection area (As) and the sums
are only over the subsections utilized by the rth rupture
(matrix Gsr is implicit here). We weight by area to be consis-
tent with the physics-based simulator analysis (Field, 2015),
although this weighting is not very influential because subsec-
tion areas are fairly uniform. The superscript cond indicates
the recurrence interval is conditioned on the assumption that
the rupture will be the next event to occur. Because of the
existence of many overlapping rupture possibilities (e.g., with
slightly different endpoints), these conditional recurrence
intervals are generally much lower than that implied by the
long-term rate of each rupture (μcondr ≪ μr � 1=fr). In fact,
if the fault discretization were to become infinitesimally small,
leading to an infinite number of overlapping rupture possibil-
ities, the long-term rate of each specific rupture would
approach zero (meaning infinite recurrence interval). The con-
ditional recurrence interval, on the other hand, represents what
we would expect if the given rupture was the only event to
occur along that stretch of fault.

Similarly, we also define an average, normalized time
since the last event for the rth rupture as

ηr �
P�Ts=μs�AsP

As
; �4�

in which Ts is the elapsed time on the sth subsection (which
may vary between subsections in an unsegmented model),
and the sums are, again, only over the subsections utilized
by the rth rupture.

The renewal model probabilities depend on three param-
eters: (1) the time since the last event normalized by the mean
recurrence interval (η � T=μ); (2) the forecast duration (ΔT)
normalized by the mean (ΔT=μ); and (3) the assumed ape-
riodicity (α). We therefore have all the information needed to
compute the conditional BPT probability for a given rupture,
which we write as PBPT

r . This probability is conditional in
both the traditional sense (that there has been a specified
period of time since the last event) and in the sense that the
rth rupture is assumed to be the next event to occur.

We now account for the fact that we do not know which
of the many overlapping rupture possibilities will occur next.
To do so, we multiply by the ratio of the conditional rupture
recurrence interval to the long-term recurrence interval
(μcondr =μr) as proxy for probability that the rth rupture is
chosen, given an occurrence of one of the overlapping ruptures:

PU3
r � PBPT

r

�
μcondr

μr

�
: �5�

In words, PBPT
r is the probability of having the rth rupture in

the given time span, conditioned on the fact that it will be the
next event to occur, and [μcondr =μr] represents the relative
likelihood of selecting the rth rupture given an occurrence
of one the overlapping possibilities (the term in brackets is
equal to the long-term rate of the rth rupture divided by a
measure of the total rate of events along that stretch of fault).
The superscript U3 indicates this approach was developed
and adopted for UCERF3. Field (2015) discusses how equa-
tion (5) can also be viewed as an inhomogeneous Poisson
process, in which the long-term rupture rate (1=μr) is multi-
plied by a time-varying probability gain.

This new methodology is not perfect. For example, there
are alternative approaches for averaging renewal-model param-
eters over the rupture subsections (Field, 2015). Fortunately,
this is a relatively minor issue, at least in comparison to other
epistemic uncertainties, as will be quantified below. Another
issue is that Monte Carlo simulations overpredict the long-term
rate of ruptures by about 10%. This bias is not unique to any
particular ruptures or subsections, implying a system-wide cor-
rection could be made if so desired. Nevertheless, having to
make any such correction is admittedly inelegant.

Recall that we are using simple point-process renewal
models to represent the elastic-rebound component of the sys-
tem. Specifically, we model each rupture as a separate renewal
process, but where the model parameters are highly correlated
due to overlapping ruptures. Given the acknowledged complex-
ity of the real earthquake system, it is not clear that any such
simplification should be perfectly unbiased. Furthermore, the
10% value is small compared to overall epistemic uncertainties,
as will be quantified below, and is less than a 20% overpredic-
tion found when the UCERF2 elastic-rebound methodology is
applied to UCERF3 (Field, 2015). This reduced bias, coupled
with the greater self-consistency and agreement with physics-
based simulators noted previously, led the current working
group to adopt the new methodology as the best available
option for representing elastic rebound in UCERF3.
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Unknown Time since the Last Event and Historic
Open Intervals

The methodology outlined above assumes knowledge
of the date of the last event on each subsection, which is
unavailable for most California faults. It also does not con-
sider the historic open interval TH, defined as the period of
time over which we know an event has not occurred (i.e.,
since record keeping began).

To address this, let f�t� be the probability density func-
tion (PDF) of recurrence intervals for a given renewal model.
If the time since the last event is known only to be greater
than TH, then the probability of having an event over forecast
duration (ΔT) is computed as (Field and Jordan, 2015)

ΔT −
R TH�ΔT
TH

F�T�dTR∞
TH
�1 − F�T��dT ; �6�

in which F�T� is the cumulative distribution (F�T� �R
T
0 f�t�dt). We use this equation to compute PBPT

r when the
date of the last event is unavailable on all subsections of the
rupture.

Mixture of Known and Unknown Time since Last
Event

The situation is more complicated when we know the
date of the last event on some subsections but not others. The
PDF for the time since the last event p�τ�, conditioned on
the fact that it is greater than TH, is given as (Field and
Jordan, 2015)

p�τjτ ≥ TH� �
1 − F�τ�R∞

TH
�1 − F�t��dt : �7�

In principle, we could aggregate such PDFs over all relevant
subsections to get a joint probability for the date of the last
event. However, each subsection can have a different p�τ�
due to variations in subsection recurrence intervals (μs).
Another problem is the recurrence interval distribution at
a point on a fault, or subsection, does not generally agree
with typical renewal models, nor should we expect them to
(Field, 2015). For example, very short recurrence intervals
can occur due to overlap among ruptures that occur on
adjacent parts of a fault; this, by the way, produces the self-
consistency problem noted with the UCERF2 elastic-
rebound methodology. Therefore, we cannot safely assume
a general form for f�t� on fault subsections, at least not as
safely as the assumption with respect to the conditional rup-
tures described above. A final issue is correlation in the date
of last event among subsections, as the most recent rupture
generally involves at least a few subsections. These compli-
cations necessitate simplifying assumptions.

The approach taken here is as follows. First, let ηk re-
present the average normalized time since the last event
when known (again, weighted by subsection area for consis-
tency). Next, we write the PDF for the subsection-averaged

normalized time since the last event with unknown ηu con-
ditioned on the recurrence interval being greater than TH, as

p�ηujηu ≥ TH=μu� �
1 − F�τ�R∞

TH=μu
�1 − F�t��dt : �8�

This is the same as equation (7), except the distribution and
forecast duration are normalized by the conditional recur-
rence interval where unknown (μu, which is computed
exactly as μcondr , but only over those sections where date
of the last event is unknown).

Each candidate value of ηu (from equation 8) is com-
bined with the known ηk to get a total, candidate normalized
time since last event for the rupture:

η′r �
Auηu � Akηk

Au � Ak ; �9�

in which Au and Ak are the total sections areas where un-
known and known, respectively. The total probability theo-
rem is then used to compute the final conditional probability
for the rupture as

Z ∞
TH=μu

p�ηujηu ≥ TH=μu�PBPT
r �η′r;ΔT=μr�dηu: �10�

The first term represents the probability for the candidate
value of ηu (from equation 8), PBPT

r �η′r;ΔT=μr� is the condi-
tional rupture probability computed from the combined nor-
malized time since last event (η′r), and considering TH, and
the integral is over all possible values of ηu (computed
numerically). This formulation reverts to the simpler cases
(above) when either the date of the last event is known on
all fault sections or known on none of them.

Implementation Details

Aperiodicity Values and Probability Model Weights

One advantage of the new probability calculation is the
ability to apply magnitude-dependent aperiodicity. As dis-
cussed by Field (2015), a decrease in aperiodicity with mag-
nitude is both implied by current physics-based simulators
and physically appealing in that smaller events are presum-
ably more influenced by evolving stress heterogeneities, and
less likely to be stress resetting events, than are larger earth-
quakes. Table 1 lists three sets of aperiodicity values based
on those tested by Field (2015), which we adopt as alterna-
tive logic-tree branches with weights as listed (also shown at
the bottom of Fig. 3).

These aperiodicity values apply to conditional ruptures,
as described above, whereas values implied for a point on
a fault (e.g., in a paleoseismic trench) are considerably larger.
For example, the UCERF3 Monte Carlo simulations con-
ducted by Field (2015) imply average subsection aperiodicity
values (at points on faults) of 0.5, 0.6, and 0.7 for the low-,
mid-, and high-range options listed in Table 1, respectively.
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For comparison, the values assumed for UCERF2 (at points)
were 0.3, 0.5, and 0.7 (with weights of 0.2, 0.5, and 0.3, re-
spectively). Therefore, aperiodicity values are actually more
consistent between UCERF2 and UCERF3 than would appear
from the values in Table 1.

We also include a Poisson (time-independent) model
branch with a weight of 0.2 (Fig. 3 and Table 1). One reason
for the Poisson branch is to acknowledge that some partic-
ipants believe the elastic-rebound hypothesis remains unveri-
fied. Another is to hedge against one potentially problematic
implication of this and all previous WGCEP elastic-rebound
models: that there is a zero probability of having a supra-
seismogenic rupture occur immediately following and
completely inside the rupture area of a larger event. It is con-
ceivable, however, that dynamic-rupture effects could reload
some internal, supraseismogenic-size portion of a mainshock
surface, although this is apparently quite rare in that we know
of no confirmed examples, and current physics-based simu-
lators lack such rerupturing events (Field, 2015).

Adding a Poisson branch to allow some immediate
reruptures is not technically correct, as logic-tree branches
are intended to be mutually exclusive (nature adheres to
either one or the other). A more correct approach would be
to include such behavior in the elastic-rebound model itself,
but we currently lack a justifiable means of doing so.

Another question is whether branch weights should vary
among faults. For example, it is possible that less active,
more poorly developed faults have greater aperiodicity or
are better approximated by a Poisson model. Fortunately, this
is not a first-order problem for UCERF3, because most of the
lower slip-rate faults lack a date of the last event and have
longer recurrence intervals, so their time-dependent proba-
bilities are close to those of a Poisson process anyway.

All of these issues were discussed at length at a review
meeting for the UCERF3 time-dependent model (23–24
January 2014), and the final values and branch weights in
Table 1 reflect results from an informal poll taken among
those in attendance (including members of the participatory
Scientific Review Panel). Such issues should nevertheless
serve as a reminder that the model is an approximation of the
system, based on expert opinion, and that alternative weights
might be appropriate in some applications, as discussed
more below.

Date-of-Last-Event Data

Two categories of data are used for determining the date
of the last event on faults in UCERF3: (1) historical earth-
quakes, where the extent of rupture is largely known from
observation, and (2) prehistoric earthquakes, where the ex-
tent of rupture is inferred from geologic data. The UCERF3
fault sections that have a date-of-last-event constraint on one
or more subsections are listed in Table 2, and the complete
dataset with references can be obtained from sources in Data
and Resources.

The historical date constraints listed in Table 2 were
obtained largely from the surface-rupturing earthquakes
compiled for the “Fault Activity Map of California” by Jen-
nings and Bryant (2010). Only ruptures that were deemed
supraseismogenic have been included, leaving out, for exam-
ple, the 1980M 5.8 Greenville earthquake. For historic earth-
quakes that did not produce surface rupture (e.g., 1933 Long
Beach), the lateral extent was inferred from seismological
studies. Subsections that have a historical date constraint
are labeled with the earthquake name in Figure 4.

Twenty-five paleoseismic earthquakes are included in
the date-of-last-event dataset, with associated fault sections
being listed as “Paleo” under data type in Table 2. Paleoseis-
mic constraints are more difficult to interpret in terms of
defining the lateral rupture extent, because we can no longer
assume they apply to an entire segment in our unsegmented
model. Although one can imagine various sophisticated
solutions to this problem, including something analogous to
the stringing pearls analysis of Biasi and Weldon (2009), the
approach taken here is relatively straightforward. For most
cases (e.g., San Jacinto [Anza]), the extent of rupture was
inferred from offset geologic features thought to have formed
in the most recent earthquake, as compiled by Madden et al.
(2013, appendix R of UCERF3-TI report).

Interpretations for the remaining paleoseismic sites are
more speculative. For those that have both timing and offset
data, we assume the collocated and adjacent subsections
ruptured (a total of three subsections, corresponding to an
∼20 km length on vertical strike-slip faults). For cases in
which the timing and slip data are located on different but
adjacent subsections, the contiguous subsections with data,
plus the adjacent subsections without data on either end, are
linked to define the rupture length. Finally, for subsections

Table 1
Probability Model Options, Associated Aperiodicity Values, and Weights
for the Third Uniform California Earthquake Rupture Forecast (UCERF3)

Time-Dependent Model

Aperiodicity

Logic-Tree Branch M ≤6:7 6:7 < M ≤ 7:2 7:2 < M ≤ 7:7 M > 7:7 Weight

Low range 0.4 0.3 0.2 0.1 0.1
Mid range 0.5 0.4 0.3 0.2 0.4
High range 0.6 0.5 0.4 0.3 0.3
Poisson 1.0 1.0 1.0 1.0 0.2
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Table 2
Summary of UCERF3 Date of Last Event Data (Where Available)

Fault Section Name
Fraction Subsects

w/ Data
Average Years

Since
Ave Norm
Time Since Calendar Year

UCERF2
Calendar Year Data Type

Burnt Mountain 0.33 22 0.02 1992 — Hist
Calaveras (Central) 2011 CFM 0.40 30 0.25 1984* 1982* Hist
Calaveras (North) 2011 CFM 0.14 274 0.75 1740 1775 Paleo
Calico–Hidalgo 0.22 1364 2.64 650 — Paleo
Camp Rock 2011 0.50 22 0.02 1992 — Hist
Cerro Prieto 1.00 80 0.99 1934 — Hist
Compton 0.60 1289 0.68 725 — Paleo
Elmore Ranch 0.33 27 0.10 1987 — Hist
Elsinore (Glen Ivy) rev 0.25 104 0.87 1910 1910 Hist
Elsinore (Julian) 0.50 1226 0.72 788 807 Paleo
Elsinore (Temecula) rev 0.50 281 0.39 1732.5 1732 Paleo
Emerson–Copper Mountain 2011 0.45 22 0.02 1992 — Hist
Eureka Peak 0.67 22 0.03 1992 — Hist
Garlock (Central) 0.75 506 1.24 1545, 1490 1540 Paleo
Garlock (East) 0.63 524 1.09 1490 1000 Paleo
Garlock (West) 0.29 329 0.40 1685 1695 Paleo
Great Valley 13 (Coalinga) 1.00 31 0.02 1983 — Hist
Green Valley 2011 CFM 0.43 399 2.15 1616 — Paleo
Hayward (No) 2011 CFM 0.10 301 1.52 1713 1715 Paleo
Hayward (So) 2011 CFM 1.00 146 1.40 1868 1868 Hist
Hector Mine 1.00 15 0.01 1999 — Hist
Hilton Creek 2011 CFM 0.75 34 0.05 1980 — Hist
Homestead Valley 2011 0.67 22 0.02 1992 — Hist
Imperial 1.00 48 0.96 1940, 1979 — Hist
Incline Village 2011 CFM 1.00 564 0.20 1450 — Paleo
Johnson Valley (North) 2011 rev 0.43 22 0.03 1992 — Hist
Kickapoo 1.00 22 0.03 1992 — Hist
Laguna Salada 0.33 122 0.42 1892 — Hist
Lenwood–Lockhart–Old Woman Springs 0.09 1864 3.37 150 — Paleo
Little Salmon (Offshore) 0.25 358 0.50 1656 — Paleo
Little Salmon (Onshore) 1.00 358 0.88 1656 — Paleo
Newport–Inglewood alt 1 0.22 81 0.12 1933 — Hist
Newport–Inglewood alt 2 0.22 81 0.09 1933 — Hist
Northridge 1.00 20 0.02 1994 — Hist
Oceanic–West Huasna 0.23 11 0.02 2003 — Hist
Owens Valley 1.00 142 0.31 1872 — Hist
Panamint Valley 0.24 564 0.80 1450 — Paleo
Pisgah–Bullion Mountain–Mesquite Lake 0.36 15 0.02 1999 — Hist
Puente Hills 0.60 314 0.19 1700 — Paleo
Puente Hills (Santa Fe Springs) 1.00 314 0.16 1700 — Paleo
Rodgers Creek–Healdsburg 2011 CFM 0.21 269 1.11 1745 1758 Paleo
Rose Canyon 0.30 361 1.24 1653 — Paleo
San Andreas (Big Bend) 1.00 157 0.77 1857 1857 Hist
San Andreas (Carrizo) rev 1.00 157 0.89 1857 1857 Hist
San Andreas (Cholame) rev 1.00 157 0.90 1857 1857 Hist
San Andreas (Coachella) rev 1.00 334 1.97 1680 1680 Paleo
San Andreas (Mojave North) 1.00 157 0.77 1857 1857 Hist
San Andreas (Mojave South) 1.00 157 2.34 1857 1857 Hist
San Andreas (North Branch Mill Creek) 0.17 334 0.23 1680 — Paleo
San Andreas (North Coast) 2011 CFM 1.00 108 0.94 1906 1906 Hist
San Andreas (Offshore) 2011 CFM 1.00 108 1.02 1906 1906 Hist
San Andreas (Parkfield) 1.00 10 0.46 2004 2004 Hist
San Andreas (Peninsula) 2011 CFM 1.00 108 0.52 1906 1906 Hist
San Andreas (San Bernardino N) 1.00 202 1.43 1812 1812 Hist
San Andreas (San Bernardino S) 1.00 202 1.23 1812 1812 Hist
San Andreas (Santa Cruz Mountains) 2011 CFM 1.00 43 0.40 1989† 1906† Hist
San Cayetano 0.50 354 0.38 1660 — Paleo
San Gregorio (North) 2011 CFM 0.13 260 0.77 1754 — Paleo
San Jacinto (Anza) rev 0.83 143 0.46 1918, 1800 1795 Both
San Jacinto (Borrego) 1.00 46 0.08 1968 1968 Hist

(continued)
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where only timing is available (no offset data), we assume
only that subsection was involved. All of these rules consti-
tute lower-bound rupture-length estimates, meaning the
influence on time dependence is reduced relative to the de-
fault historic open interval.

Table 2 indicates which of the fault sections were treated
as time dependent in UCERF2 (in an elastic-rebound sense),
with 38 being added in UCERF3. Table 3 lists those that
were treated as time dependent in UCERF2 (by assuming

a value) but lack any actual data constraint; they are treated
here with the historic open interval.

Historic Open Interval

We use the year 1875 to define the historic open interval
(TH � 2014 − 1875 � 139 years). That is, for faults where
we lack a date of the last event, we assume it is sometime
prior to 1875. This value represents a compromise among

Table 2 (Continued)

Fault Section Name
Fraction Subsects

w/ Data
Average Years

Since
Ave Norm
Time Since Calendar Year

UCERF2
Calendar Year Data Type

San Jacinto (Clark) rev 1.00 214 0.45 1800 1540 Paleo
San Jacinto (Superstition Mountain) 0.40 474 1.43 1540 — Paleo
Sierra Madre (San Fernando) 1.00 43 0.03 1971 — Hist
Superstition Hills 1.00 27 0.10 1987 — Hist
White Mountains 0.11 28 0.05 1986 — Hist
White Wolf 1.00 62 0.06 1952 — Hist
Whittier alt 1 0.13 1864 3.64 150 207 Paleo
Whittier alt 2 0.14 1864 2.07 150 207 Paleo

Fraction Subsects w/ Data gives the fraction of fault length covered, Average Years Since is relative to 2014, Average Norm Time Since is the average
years since the event divided by the total long-term model rate, Calendar Year is the year of the event (with duplicates where there is more than one along
the fault section), UCERF2 Calendar Year is the value applied in UCERF2 (blank if not treated as such), and Data Type indicates whether it is a historical
event (Hist) or from paleoseismology (Paleo). This dataset is also available with references from sources in Data and Resources.
*The value of 1984 for UCERF3 represents the 1984 Morgan Hill earthquake, which only ruptured ∼40% of the parent fault section, whereas the value

of 1982 used in UCERF2 was the modal value fromWorking Group on California Earthquake Probabilities (WGCEP; 2003) and was applied to the entire
segment in the previous models.

†This fault section was assumed to have ruptured in the 1989 Loma Prieta earthquake in UCERF3, whereas the last rupture was assumed to be 1906 in
UCERF2.

Figure 4. Fault subsections that have a historical date-of-last event, based on the earthquakes as labeled. The scale, years since last event,
is relative to 2014.
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working-group members, with perspectives ranging from
about 1850 to 1900. Fortunately, the sensitivity tests pre-
sented below imply that, while accounting for the historic
open interval is important, the range of reasonable choices
is not overly influential.

We understand there may be some post-1875 supraseis-
mogenic events that remain unassociated with particular faults.
Handling these properly would involve defining logic-
tree branches and associated weights for every possible fault
of origin. However, unless the event can be associated with
only very few candidates, it is not likely to have an appreciable
impact on average hazard estimates. Another question is
whether the historic open interval should vary by fault. How-
ever, doing so significantly complicates the methodology (e.g.,
requiring some averaging of values over the subsections uti-
lized by each rupture), so we have not attempted to do so here.

Results

Probability of What?

We are able to compute a variety of evaluation metrics
with UCERF3, including probabilities for individual rup-
tures, different fault subsections, and aggregates for sets
of faults or for different subregions within the state. We
can also compute hazard curves and hazard maps, as utilized
extensively in the UCERF3-TI report, as well as statewide
loss estimates (e.g., Porter et al., 2012). Results for a time-
dependent model also depend on the start year and duration
of the forecast, both of which are adjustable in UCERF3.

With more than 250,000 ruptures on each logic-tree
branch, it is not feasible to present the probability of each in
this report. Instead, we quantify the probability that each
fault subsection will participate in one or more events of in-
terest (e.g.,M ≥6:7), which, as discussed in the UCERF3-TI
report, is a more relevant hazard metric anyway. Because
there are more than 2600 subsections (the exact number de-
pends on the chosen fault model), we show such probabilities
in map form only. For tabulated values, we aggregate prob-
abilities back onto the 350 main, or parent, fault sections.

We use a start year of 2014 for the UCERF3 results pre-
sented here. However, UCERF2 probabilities are based on a

start year of 2007, in accordance with the value applied in that
study. To make meaningful comparisons, we follow the
WGCEP tradition of focusing on M ≥6:7 probabilities for
a 30 year forecast. Some other hazard-related metrics are also
presented, however, and computer code exists for those who
want to explore other possibilities (see Data and Resources).

All fault-based probabilities correspond to supraseismo-
genic ruptures. The contributions from subseismogenic rup-
tures and off-fault seismicity are included where appropriate,
but only using a time-independent (Poisson) model. Except
where noted, the contribution from aftershocks is included,
which manifests as a 3% increase in long-term rates for supra-
seismogenic ruptures (as described in the UCERF-TI report);
probabilities cited for UCERF2 here have also been corrected
accordingly, whereas those listed in the original UCERF2
report do not include the 3% aftershock contribution.

The UCERF3 time-independent model has 1440 logic-
tree branches. Adding the four probability model options
(Fig. 3; Table 1) gives 5760 branches for the time-dependent
model. Unless otherwise noted, results represent an average
over the entire logic tree, weighted by the relative probability
of each branch. To indicate epistemic uncertainties, we also
tabulate minimum and maximum values among the logic-tree
branches. An alternative would be to cite the 95% confidence
bounds or any other percentile implied by the logic-tree
branches (and weights). However, stating such confidence
bounds would be misleading, as it assumes all viable models
are represented on the logic tree, which we know is not the
case. We therefore use minimum and maximum values as a
measure of the epistemic uncertainty here but emphasize these
are only within the context of our inevitably limited model.

Extensive tests have also been conducted to explore
sensitivity to various calculation options, including different
viable averaging approaches, alternative historic open inter-
vals, and different assumptions with respect to the along-fault
extent of date-of-last-event constraints. Only a representative
subset of these analyses is presented here.

Subsection Probabilities

Figure 5a shows 30 yr, M ≥6:7, branch-averaged prob-
abilities for each UCERF3 fault subsection, together with the
implied probability gain relative to Poisson (Fig. 5b), and
the ratio with respect to UCERF2 for the faults used in both
studies (Fig. 5c). Results for other magnitude thresholds and
for a 5 year forecast are available from sources in Data and
Resources.

It is important to understand the probability gains in
Figure 5b represent an average over all ruptures, essentially
weighted by the relative rate of each. Figure 5d shows the
probability gains implied by using the average, long-term
recurrence interval of each subsection (μs, including all
supraseismogenic ruptures), together with the time since last
event where known (Ts) and an assumed aperiodicity (α) of
0.3; this represents the result that would be obtained if each
subsection ruptured only by itself. Figure 5d exhibits both

Table 3
Fault Sections that Were Treated as Time Dependent in

UCERF2 (in an Elastic-Rebound Sense), but that
Currently Lack Any Type of Date-of-Last-Event
Constraint (Previous Values were Assumed)

Fault Section Name
UCERF2

Calendar Year

Calaveras (South) 1899
Elsinore (Coyote Mountain) 1892
Elsinore (Glen Ivy stepover) 1910
San Andreas (San Gorgonio Pass–Garnet Hill) 1680
San Jacinto (Coyote Creek) 1892
San Jacinto (San Bernardino) 1769
San Jacinto (San Jacinto Valley) rev 1981
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Figure 5. (a) Average M ≥6:7 30 yr subsection probabilities for all UCERF3 time-dependent model branches. (b) UCERF3 subsection
probability gains (average time-dependent result divided by average of all time-independent/Poisson model branches). (c) Ratio of UCERF3
to UCERF2 probabilities for faults used in both studies, where UCERF3 subsection probabilities have been aggregated onto parent sections
before taking the ratio. (d) Thirty-year subsection probabilities computed using average UCERF3 recurrence interval (including all supra-
seismogenic ruptures), time since last event (where known), and an assumed aperiodicity of 0.3; the historic open interval is ignored (zero) in
this plot. Only fault traces are shown in these plots.
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more extreme values and more spatial variability along
faults, highlighting the strong influence of averaging in
Figure 5b. The probability gain for any one rupture in
UCERF3, however, is more like an along-fault average of
those in Figure 5d (plus the influence of the historic open
interval where data are lacking).

Figure 5c shows that, for most faults, the differences
between UCERF2 and UCERF3 are greater than the
UCERF3-implied probability gains (Fig. 5b). There are many
potential explanations for the UCERF2 to UCERF3 changes,
including (1) the many differences in the underlying long-term
models (e.g., deformation model slip rates, scaling relation-
ships, degree of segmentation); (2) change in the elastic-
rebound probability calculation (e.g., methodological
differences, magnitude-dependent aperiodicity, consideration
of historic open interval); and (3) the fact that UCERF2 in-
cludes an empirical model component, which has been
dropped in UCERF3 for reasons discussed in the Introduction.
Although a complete accounting of the influence of each of
these variables is beyond the present scope, general influences
are revealed in the branch sensitivity tests presented below.

Parent Section Probabilities

Probabilities have also been aggregated onto the 350 pa-
rent fault sections (the total number between the two fault
models). These represent participation probability, meaning

the likelihood of an event occurring on any part of the parent
fault section, even if the majority of the rupture surface is else-
where. Although this definition is useful, especially when
making comparisons to UCERF2, it can be deceptive. For ex-
ample, probabilities depend on the total length of each parent
section, which varies significantly throughout the fault model.
Other potentially misleading cases are identified below.

Parent section probabilities for both 30 and 5 year fore-
casts, and for a variety of magnitude thresholds, are available
from sources listed in Data and Resources. These include
mean, minimum, and maximum values from the logic tree, as
well as comparisons to UCERF2 where possible. For 30 yr
M ≥6:7 events, Table 4 lists the parent fault sections that have
the 10 highest and 10 lowest probability gains, reflecting areas
where the time dependence is particularly influential. All but
one of the lowest gains are due to recent events, with the
exception (Owens Valley Keough Hot Springs) representing
a fault that mostly ruptures with another fault that did have
a recent event (Owens Valley). This case exemplifies the ef-
fective averaging that occurs over neighboring fault sections.

The 10 highest probability gains in Table 4 are due to a
relatively high normalized time since the last event and/or the
historic open interval. The highest gain (1.97) is on the San
Andreas (San Gorgonio Pass–Garnet Hill) fault section, which
does not have a date-of-last-event constraint; the high gain is
due to the historic open interval and a high rate of participation
with San Andreas (Coachella) rev, the latter of which

Table 4
30 yrM ≥6:7 UCERF3 Probabilities Aggregated by Parent Fault Section, Where the List Here Represents Sections that Have the 10

Lowest and 10 Highest Probability Gains

Fault Section Name
Fract SubSects

with Data
Ave Years
Since

Ave Norm
Time Since Mean Min. Max. Pois Gain

Kickapoo 1.00 22 0.03 9:07 × 10−04 1:12 × 10−08 1:60 × 10−02 4:02 × 10−03 0.22
Owens Valley 1.00 142 0.31 1:12 × 10−02 2:01 × 10−04 7:48 × 10−02 3:92 × 10−02 0.28
White Wolf 1.00 62 0.06 3:90 × 10−03 6:76 × 10−05 3:28 × 10−02 1:22 × 10−02 0.30
Homestead Valley 2011 0.67 22 0.02 3:04 × 10−03 1:95 × 10−06 2:45 × 10−02 9:40 × 10−03 0.31
Owens Valley Keough Hot Springs 0.00 — — 6:04 × 10−03 1:21 × 10−04 4:04 × 10−02 1:82 × 10−02 0.37
Hector Mine 1.00 15 0.01 7:71 × 10−03 4:72 × 10−05 5:83 × 10−02 1:36 × 10−02 0.40
Great Valley 13 (Coalinga) 1.00 31 0.02 6:03 × 10−03 2:32 × 10−04 4:73 × 10−02 1:67 × 10−02 0.40
Hilton Creek 2011 CFM 0.75 34 0.05 1:25 × 10−02 1:45 × 10−03 7:28 × 10−02 3:14 × 10−02 0.41
Incline Village 2011 CFM 1.00 564 0.20 1:04 × 10−03 0:00 × 1000 6:03 × 10−03 2:04 × 10−03 0.51
Johnson Valley (North) 2011 rev 0.43 22 0.03 7:61 × 10−03 9:48 × 10−05 5:30 × 10−02 1:37 × 10−02 0.52

Hayward (No) 2011 CFM 0.10 301 1.52 1:82 × 10−01 7:32 × 10−02 3:41 × 10−01 1:16 × 10−01 1.57
San Gorgonio Pass 0.00 — — 1:57 × 10−02 2:07 × 10−03 7:55 × 10−02 9:67 × 10−03 1.61
Brawley (Seismic Zone) alt 1 0.00 — — 2:80 × 10−01 9:05 × 10−02 5:82 × 10−01 1:73 × 10−01 1.63
Imperial 1.00 48 0.96 2:60 × 10−01 3:41 × 10−02 5:96 × 10−01 1:56 × 10−01 1.70
Eureka Peak 0.67 22 0.03 2:23 × 10−04 1:63 × 10−05 1:58 × 10−03 1:31 × 10−04 1.75
San Andreas (San Bernardino S) 1.00 202 1.23 2:19 × 10−01 4:41 × 10−02 4:95 × 10−01 1:22 × 10−01 1.79
San Andreas (Coachella) rev 1.00 334 1.97 2:68 × 10−01 6:68 × 10−02 6:04 × 10−01 1:43 × 10−01 1.86
Brawley (Seismic Zone) alt 2 0.00 — — 2:58 × 10−01 4:33 × 10−02 5:98 × 10−01 1:36 × 10−01 1.89
Joshua Tree (Seismicity) 0.00 — — 1:50 × 10−03 7:98 × 10−05 1:40 × 10−02 7:68 × 10−04 1.94
San Andreas (San Gorgonio
Pass-Garnet Hill)

0.00 — — 2:10 × 10−01 6:17 × 10−02 5:10 × 10−01 1:06 × 10−01 1.97

Mean is the branch-averaged probability, Min. and Max. are the minimum and maximum among branches, Pois is the branch average time-independent
result, and Gain is the ratio of Mean to Pois. Fract Subsects with Data represents the percentage of subsections that have a useable date of last event, Ave
Years Since is the average where known (relative to 2014), and Ave Norm Time Since is the latter divided the long-term model recurrence interval
(including all supraseismogenic events). These probabilities are computed as one minus the total probability that no M ≥6:7 ruptures touch any part
of the parent fault section. Results for all parent fault sections are available from sources in Data and Resources.
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constitutes the highest gain among faults with known date of
last event. The exact same explanation (open interval and par-
ticipation with San Andreas [Coachella] rev) applies to all other
parent sections on the list that lack a date-of-last-event con-
straint. The high gains for Imperial and Eureka Peak, both
of which have a date of last event, also result from high partici-
pation with San Andreas (Coachella) rev. Finally, San Andreas
(San Bernardino S) has a high gain (1.79) due to a high nor-
malized time since the last event, and Hayward (No) 2011 CFM
has a high gain (1.57) due to both the historic open interval and
a high normalized time since the last event (the latter defined on
only a small portion of the parent section).

Two of the high-gain cases in Table 4 warrant further
discussion, both because they recently ruptured. Joshua
Tree (Seismicity) does not have a date of the last event be-
cause the 1992 M 6.1 Joshua Tree earthquake was deemed
subseismogenic. Eureka Peak recently ruptured as a very
early aftershock of the 1992 Landers earthquake sequence
(Hough, 1994) but has a high gain due to it mostly partici-
pating with the San Andreas (Coachella) rev fault section.
This high gain does not mean a high probability of occur-
rence, as the M ≥6:7 30 yr probability for Eureka Peak is
just about 1 in 10,000.

Table 5 lists the top 10 parent fault sections in terms of
total M ≥6:7 30 yr probabilities for both UCERF2 and
UCERF3. Those ranked as first, second, and third for
UCERF3 (Cerro Prieto, Mendocino, and Brawley [Seismic
Zone], respectively), were not included as fault-based sources
in UCERF2 but were treated as special, time-independent seis-

micity zones. Cerro Prieto has the top ranking due to a high
long-term rate, as the probability gain is only 1.05. Mendocino
and Brawley (Seismic Zone) make the list because of high
gains, the reasons for which were discussed above (historic
open interval and participation with San Andreas [Coachella]
rev). In fact, high gains contribute significantly for all the other
sections listed in Table 5. That the San Andreas (creeping
section) 2011 CFM fault section makes the UCERF3 list
might come as a surprise, given its high rate of creep and
microseismicity. However, most of these events only slightly
penetrate the creeping section from either the north or south;
the probability of completely through-going ruptures is about
1 in 1000. Again, this serves as a reminder that such partici-
pation probabilities can be misleading. Maacama 2011 CFM
has a large gain (1.54) due to a high long-term rate coupled
with the historic open interval.

Aggregate Probabilities for Main Faults

Table 6 lists 30 yr M ≥6:7 probabilities for several main
faults, shown in Figure 6, each of which was treated as time
dependent in UCERF2 (in an elastic-rebound sense). Logic-
tree mean, minimum, and maximum values are listed, as well
as probability gains with respect to Poisson, for both UCERF3
and UCERF2. Also listed is the ratio of UCERF3 to UCERF2
target moment rates in the time-independent models, giving an
indication of long-term slip-rate changes. The moment rates
are target values because neither model matched them exactly
(due to trade-offs with paleoseismic event-rate constraints),

Table 5
The Parent Fault Sections with the 10 Highest M ≥6:7 30 yr Probabilities

Rank Fault Section Name
Fract SubSects

w/ Data
Ave Years
Since

Ave Norm
Time Since Mean U3 Gain U2 Gain

UCERF3 1 Cerro Prieto* 1.00 80 0.99 0.30 1.05 —
2 Mendocino* 0.00 — — 0.28 1.33 —
3 Brawley (Seismic Zone), alt 1 & alt 2* 0.00 — — 0.27 1.76 —
4 San Andreas (Coachella) rev 1.00 334 1.97 0.27 1.86 1.43
5 San Andreas (Creeping Section) 2011 CFM 0.00 — — 0.26 1.21 —
6 Imperial 1.00 48 0.96 0.26 1.70 1.00
7 Hayward (So) 2011 CFM 1.00 146 1.40 0.25 1.56 1.26
8 San Andreas (San Bernardino N) 1.00 202 1.43 0.24 1.56 1.31
9 San Andreas (Mojave South) 1.00 157 2.34 0.23 1.49 1.30
10 Maacama 2011 CFM 0.00 — — 0.23 1.54 0.94

UCERF2 1 San Andreas (Cholame) rev — — — 0.30 1.40 1.29
2 San Andreas (Coachella) rev — — — 0.29 1.86 1.43
3 Imperial — — — 0.29 1.70 1.00
4 San Andreas (Parkfield) — — — 0.27 1.35 1.30
5 San Andreas (Mojave South) — — — 0.25 1.49 1.30
6 San Andreas (Carrizo) rev — — — 0.22 1.41 1.31
7 San Andreas (Big Bend) — — — 0.21 1.40 1.31
8 San Andreas (Mojave North) — — — 0.21 1.36 1.31
9 San Andreas (San Bernardino N) — — — 0.21 1.56 1.31
10 Rodgers Creek–Healdsburg 2011 CFM — — — 0.20 1.56 1.39

Mean is the mean probability and Gain is the mean divided by the Poisson-model mean, in which U3 Gain is the value for UCERF3 and U2 Gain is
the value from UCERF2 for comparison if available. Fract Subsecs w/ Data represents the fraction of subsections that have a date-of-last-event
constraint. UCERF2 results are listed at the bottom for comparison and are based on the start year of 2007 used in that study. Results for all
parent fault sections are available from sources in Data and Resources.
*The names in the UCERF3 list were not included in the UCERF2 model.
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but they are close enough to reflect overall slip-rate changes.
Figure 7 shows the 30 year participation probability for each
main fault as a function of magnitude threshold (cumulative
magnitude–probability distributions).

South San Andreas. The South San Andreas exhibits the
highestM ≥6:7 probability among the main faults in UCERF3
(0.53), which is a little less than the UCERF2 value of 0.59.
This change is consistent with a 12% reduction in the target
moment rate (e.g., from Global Positioning System con-
straints), although this is one area where such targets are at odds
with paleoseismic event-rate constraints. Furthermore, the
probability gain increased from 1.23 to 1.45, suggesting the
probability should have increased. Figure 7 reveals UCERF3
participation probabilities are actually higher than UCERF2
values at both lower and higher magnitudes (M ≤6:7 and
M ≥7:8). Therefore, the reduction forM ≥6:7 stems frommo-
ment rates going to other magnitudes, either in satisfying pa-
leoseismic event-rate constraints or in removing the UCERF2
statewide overprediction of M ∼ 6:7 event rates. Regardless,
the differences between UCERF3 and UCERF2 values are gen-
erally quite small compared to overall uncertainties.

North San Andreas. The mean probability for M ≥6:7
events on the North San Andreas has increased from 0.21 to
0.33, but results are generally consistent given the logic-tree
minimum and maximum (e.g., 0.01 and 0.73, respectively, for
UCERF3). Only a small fraction of this change can be attrib-
uted to the probability gain, which went from 0.87 to 0.96, and
the target moment rate actually went down by 16%. The main

cause is fault discretization, as can be inferred from Figure 7.
In UCERF2, the North San Andreas was divided into only
four segments, which ranged in length from ∼70 to ∼170 km,
with mean characteristic magnitudes of 7.0 and 7.5, respec-
tively (for single-segment ruptures). As such, there was no
accommodation for seismogenic-thickness-size ruptures (i.e.,
∼12 × ∼12 km), except from an unsegmented model option
that was only given a branch weight of 0.1 (and where most of
the moment went into larger events anyway). Because
UCERF3 is unsegmented, it allows more M ∼ 6:7 events be-
cause they are consistent with data used in the inversion. The
UCERF3 influence of time dependence is almost impercep-
tible for this main fault, except near magnitude 7.7, where
the gain is below 1.0 due to the 1906 earthquake (Fig. 7).

Hayward–Rodgers Creek. The mean M ≥6:7 probability
for Hayward–Rodgers Creek is unchanged (0.32 in both
UCERF3 and UCERF2), in spite of an increase in the prob-
ability gain (from 1.34 to 1.52) and a 24% increase in the
target moment rate. These latter increases are compensated
at lower magnitudes by UCERF3, including more multifault
ruptures, which also manifest as an approximate doubling of
probabilities above M 7.2 (Fig. 7).

Calaveras. The biggestM ≥6:7 probability increase among
the main faults is on the Calaveras, going from a mean of
0.08 in UCERF2 to a mean of 0.25 in UCERF3 (about a factor
of 3). In fact, the UCERF2 mean is not even within the range
of UCERF3 values (just below the UCERF3 minimum of
0.10). Some of this can be attributed to the probability gain

Table 6
Aggregate 30 yr M ≥6:7 Probabilities (and Implied Gains Relative to a Time-Independent Model) for the Main

Faults Considered by Previous WGCEPs

UCERF3, from 2014 UCERF2, from 2007

Main Fault Name Mean Min. Max. Gain Mean Min. Max. Gain U3=U2 Mean U3=U2 MoRate

South San Andreas* 0.53 0.17 0.93 1.45 0.60 0.23 0.94 1.22 0.87 0.88
North San Andreas† 0.33 0.01 0.73 0.96 0.21 0.06 0.40 0.87 1.56 0.84
Hayward–Rodgers Creek‡ 0.32 0.14 0.54 1.52 0.32 0.12 0.68 1.34 1.01 1.24
Calaveras§ 0.25 0.10 0.54 1.46 0.08 0.02 0.22 0.98 3.33 1.43
San Jacinto‖ 0.09 0.00 0.35 0.83 0.32 0.14 0.55 1.02 0.29 0.77
Garlock# 0.08 0.00 0.37 1.16 0.06 0.03 0.13 1.06 1.34 0.85
Elsinore** 0.05 0.01 0.17 0.99 0.11 0.05 0.25 0.90 0.46 0.57

All probabilities have been rounded to the nearest percent, and UCERF2 results are listed for comparison. All results include
aftershocks. Min. and Max. values represent the minimum and maximum among all logic-tree branches. U2=U3 MoRate is the
ratio of UCERF3 to UCERF2 target moment rates.
*Fault Sections: San Andreas (Parkfield), San Andreas (Cholame) rev, San Andreas (Carrizo) rev, San Andreas (Big Bend), San

Andreas (Mojave North), San Andreas (Mojave South), San Andreas (San Bernardino N), San Andreas (San Bernardino S),
San Andreas (San Gorgonio Pass-Garnet Hill), San Andreas (North Branch Mill Creek), and San Andreas (Coachella) rev.

†Fault Sections: San Andreas (Offshore) 2011 CFM, San Andreas (North Coast) 2011 CFM, San Andreas (Peninsula) 2011 CFM,
and San Andreas (Santa Cruz Mts) 2011 CFM.

‡Fault Sections: Rodgers Creek—Healdsburg 2011 CFM, Hayward (No) 2011 CFM, Hayward (So) 2011 CFM.
§Calaveras (North) 2011 CFM, Calaveras (Central) 2011 CFM, Calaveras (South) 2011 CFM.
‖San Jacinto (San Bernardino), San Jacinto (San Jacinto Valley) rev, San Jacinto (Stepovers Combined), San Jacinto (Anza) rev,

San Jacinto (Clark) rev, San Jacinto (Coyote Creek), San Jacinto (Borrego), San Jacinto (Superstition Mountain).
#Garlock (East), Garlock (Central), Garlock (West).
**Whittier alt 1, Elsinore (Glen Ivy) rev, Elsinore (Stepovers Combined), Elsinore (Temecula) rev, Elsinore (Julian), Elsinore

(Coyote Mountains).
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increase from 0.98 to 1.46, and some can be attributed to the
43% increase in target moment rate. However, much of the
increase also comes from the Calaveras having a higher rate
of participation in larger magnitude events (Fig. 7), reflecting
the broader range of multifault ruptures included in UCERF3.
UCERF2, on the other hand, was forced to put all moment
into M ≤ ∼ 7 events, with a high fraction going into the
smallest single-segment ruptures, which is why UCERF2
probabilities are actually higher than those of UCERF3 at
the lowest magnitudes (Fig. 7).

San Jacinto. The biggest M ≥6:7 probability decrease
among main faults is on the San Jacinto, going from 0.32
in UCERF2 to 0.09 in UCERF3 (about a factor of 3 reduc-
tion). Some of this can be attributed to a gain decrease (from
1.02 to 0.83) and some to a target moment rate reduction of
23%. Figure 7 reveals a greater participation in M ≥7:7
events, as defined in the long-term model, is also influential
because less moment rate is available for smaller events.

Garlock. The meanM ≥6:7 probability on the Garlock fault
has gone from 0.06 to 0.08 between UCERF2 and UCERF3.
This is consistent with a gain increase from 1.06 to 1.16 but is
countered by a target moment rate reduction of 15%. Again,
this is primarily due to fault-discretization issues in UCERF2
(segment lengths between 40 and 100 km), whereas UCERF3
allows shorter ruptures to the extent they are consistent with
data, which increases rates near M 6.7 (Fig. 7).

Elsinore. The mean M ≥6:7 probability for Elsinore has
decreased from 0.11 to 0.05, mostly due to an ∼43% reduc-
tion in target moment rate between UCERF2 and UCERF3,
and in spite of a gain increase from 0.90 to 0.99. All seg-
ments in the UCERF2 model have lengths greater than

40 km, resulting in very few M ≤6:5 earthquakes in
UCERF2 (Fig. 7). UCERF3, on the other hand, allows
shorter-length ruptures to the extent they are consistent with
data, which takes moment rate away from M ≥6:7 events.

Probabilities for Regions

Figure 8 shows cumulative magnitude–probability distri-
butions for the following regions: the entire area (All CA), the
northern half (N. CA), the southern half (S. CA), Los Angeles
(LA), and San Francisco (SF). The area for each of these re-
gions is shown in Figure 1. Probabilities for select magnitude
thresholds are also listed in Table 7. Again, these probabilities
reflect participation, meaning they include every event that has
any part of its rupture surface inside the region, even if most is
outside. This differs from the values listed in the UCERF2
documentation, where contributions wereweighted by the frac-
tion of the rupture surface inside the region (reflecting more of
a nucleation probability). We prefer the definition used here
because we do not want, for example, to reduce the contribu-
tion of a full South San Andreas rupture in the LA region just
because it extends well to the northeast and southwest.

For All CA, probabilities remain largely unchanged
between UCERF2 and UCERF3, especially given the overall
epistemic uncertainties. However, probabilities in both models
approach 1.0 at lower magnitudes, effectively masking any
real differences. The biggest change is for M >8 events,
for which the mean probability has increased from 0.05 in
UCERF2 to 0.07 in UCERF3. Some of this can be attributed
to a gain increase from 1.06 to 1.21, but most is due to the
inclusion of multifault ruptures in UCERF3, including events
that rupture through the San Andreas creeping section
(discussed above). Figure 8 demonstrates epistemic uncertain-
ties for All CA have increased significantly in UCERF3 and
are large compared to differences between UCERF2 and

Figure 6. The main faults considered by this and previousWorking Group on California Earthquake Probabilities. See Table 6 for a list of
fault sections included in each. The color scale indicates the slip rate for the geologic deformation model in UCERF3-TI.
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UCERF3 mean values. For example, the difference between
the UCERF3 minimum and maximum value is 0.32 for
M >8, with the UCERF3 to UCERF2 difference being 0.02
for such magnitudes. All of these conclusions apply to the
N. CA and S. CA regions as well.

TheM ≥6:7 probabilities for the SF area are largely un-
changed, going from 0.67 in UCERF2 to 0.72 in UCERF3.
Differences are greatest for M ≥7:5 events, where probabil-
ities increased by ∼60% (from 0.12 to 0.20). Some of this
can be attributed to a probability gain increase from 0.83
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Figure 7. Thirty-year magnitude–probability distributions, representing participation probabilities as a function of magnitude, for the
main faults listed in Table 5 and shown in Figure 6. UCERF3 results are shown in blue, and UCERF2 results are red. The wide lines represent
branch-averaged values, the thin lines represent the minimum and maximum among branches, and the dotted lines represent time-indepen-
dent model values (averaged over Poisson-model branches).
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to 0.93 and to a target moment-rate increase of 7% (see
table 14 of the UCERF3-TI report). Most, however, results
from a larger set of multifault ruptures being included in the
UCERF3 earthquake rate model. Again, epistemic uncertain-
ties have increased and are large compared to UCERF2–
UCERF3 mean-value differences.

The LA region exhibits probability reductions of up to
30% between M 6.4 and 7.5, in spite of overall probability
gain increases between UCERF2 and UCERF3. However,
probabilities have increased by more than a factor of 2 for

M ≥8 events (from 0.03 to 0.07), with gains largely un-
changed at these magnitudes. Target moment rate differences
are not very influential, having gone down by 7% in this re-
gion (table 14 of the UCERF3-TI report). The probability
changes, therefore, reflect the inclusion of multifault ruptures
in the UCERF3 earthquake rate model, as well as a suppres-
sion of M ∼ 6:7 events due to their being overpredicted in
UCERF2. In fact, the UCERF2 to UCERF3 probability
changes seen for LA are completely consistent with
differences in respective long-term magnitude–frequency

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

All CA N. CA

S. CA SF

LA

5 6 7 8 9 5 6 7 8 9

5 6 7 8 9 5 6 7 8 9

5 6 7 8 9

3
0

 Y
e

a
r 

P
ro

b
a

b
il

it
y

3
0

 Y
e

a
r 

P
ro

b
a

b
il

it
y

3
0

 Y
e

a
r 

P
ro

b
a

b
il

it
y

Magnitude

Magnitude

Figure 8. Thirty-year participation probabilities as a function of magnitude (magnitude–probability distributions) for the following re-
gions: the entire California area (All CA), the northern half (N. CA), the southern half (S. CA), Los Angeles (LA), and San Francisco (SF).
The area of each region is shown in Figure 1. UCERF3 results are shown in blue (based on a start year of 2014), and UCERF2 results are red
(based on the start year of 2007 used in that study). The wide lines represent branch-averaged values, the thin lines represent the minimum
and maximum among branches, and the dotted lines represent time-independent model values (averaged over Poisson-model branches). The
gray lines represent the contribution from gridded seismicity in UCERF3 (subseismogenic and off-fault ruptures, not treated as time de-
pendent), and the magenta line represents those from UCERF2 (where no minimum and maximum are shown because there was only one
logic-tree branch).
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distributions (fig. 26 of the UCERF3-TI report). Epistemic
uncertainties are considerably wider than for the SF region
and again represent an increase over those in UCERF2.

Participation Probability Maps

Figure 9 maps 30 yr M >6:7 participation probabilities
throughout the region for UCERF3 and UCERF2, as well as
the probability gains implied by each model (results for other
magnitude thresholds can be obtained from sources listed in
Data and Resources). The region has been discretized into
0:1° × 0:1° grid cells for these maps, and fault-based proba-
bilities have been mapped onto the grid cells accordingly.
Fault-based probabilities are spread over a slightly wider area
in the UCERF3 maps, compared to those in UCERF2, which
is particularly apparent for the San Andreas fault. This simply
results from the fact that, in UCERF3, each fault section was
assigned a polygon in order to be more explicit about the spa-
tial area it represents (meaning any supraseismogenic rupture
inside the polygon is considered an occurrence on that fault

section). Fault-based probabilities are therefore spread over
the grid cells that reside within the associated fault-section
polygon, leading to a wider area of influence adjacent to
UCERF3 faults; see Powers and Field (2013, appendix O
of UCERF3-TI report) for implementation details.

Another obvious difference in the participation probabil-
ity maps is the influence of UCERF2 type C zones, seen as
the two large green areas in Figure 9c (one in north-
eastern California and the other in the Mojave Desert). These
types of sources were not used in UCERF3, having been re-
placed by newly added faults and improved deformation
models.

Of more relevance to the influence of elastic rebound are
the probability gain maps (Fig. 9b,d). Areas with gains below
1.0 in UCERF3 represent faults that have recently ruptured.
Gains below 1.0 in UCERF2, on the other hand, generally
represent the influence of the empirical model, which has
not been included in UCERF3 for reasons discussed in
the Introduction. Perhaps the most important difference,

Table 7
Thirty-Year Participation Probabilities for Different Regions of California

Region Magnitude U3 Mean U3 Min. U3 Max. U3 Gain U2 Mean U2 Gain U3=U2

All CA 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6.7 1.00 0.97 1.00 1.00 1.00 1.00 1.00
7 0.93 0.77 1.00 1.04 0.94 1.00 0.98
7.5 0.48 0.17 0.85 1.09 0.47 1.07 1.01
7.7 0.27 0.03 0.71 1.08 0.27 1.09 0.98
8 0.07 0.00 0.32 1.21 0.05 1.06 1.53

N. CA 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6.7 0.95 0.84 1.00 1.04 0.95 1.00 0.99
7 0.76 0.55 0.96 1.09 0.76 1.00 1.00
7.5 0.28 0.08 0.60 1.01 0.27 1.03 1.05
7.7 0.15 0.01 0.45 0.94 0.17 1.05 0.87
8 0.05 0.00 0.25 1.14 0.04 1.02 1.41

S. CA 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6.7 0.93 0.77 1.00 1.03 0.97 1.00 0.96
7 0.75 0.44 0.97 1.08 0.83 1.02 0.90
7.5 0.36 0.09 0.79 1.22 0.38 1.17 0.93
7.7 0.22 0.02 0.68 1.29 0.21 1.23 1.06
8 0.07 0.00 0.32 1.25 0.03 1.33 2.47

SF 6 0.98 0.89 1.00 1.02 0.96 1.00 1.02
6.7 0.72 0.52 0.94 1.12 0.67 0.99 1.08
7 0.51 0.27 0.84 1.09 0.40 0.97 1.27
7.5 0.20 0.05 0.43 0.93 0.12 0.83 1.61
7.7 0.10 0.00 0.32 0.80 0.08 0.81 1.24
8 0.04 0.00 0.21 1.04 0.02 0.81 1.95

LA 6 0.96 0.84 1.00 1.03 0.95 1.00 1.01
6.7 0.60 0.28 0.92 1.14 0.80 1.00 0.76
7 0.46 0.17 0.87 1.17 0.65 1.04 0.70
7.5 0.31 0.05 0.77 1.29 0.35 1.19 0.87
7.7 0.20 0.01 0.68 1.33 0.20 1.25 1.01
8 0.07 0.00 0.32 1.27 0.03 1.34 2.51

The regions are as follows: the entire California area (All CA), the northern half (N. CA), the southern half (S. CA),
Los Angeles (LA), and San Francisco (SF). The area of each region is shown in Figure 1. Magnitude represents the
threshold value (probabilities are for events greater than or equal to this value). U3 stands for UCERF3, based on a
start year of 2014, and U2 stands for UCERF2, based on the start year of 2007 used in that study. Mean is the branch-
averaged value, Min. and Max. are the extreme values among logic-tree branches, and Gain represents the average
time-dependent value divided by the time-independent (Poisson) model average. U3=U2 is the ratio of UCERF3 to
UCERF2 mean. All values have been rounded to the second decimal place.
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however, is that UCERF3 exhibits larger probability gains
and over larger areas. Much of this can be attributed to the
influence of the historic open interval, which was not used in
UCERF2, and produces significant probability gains on
high-rate faults that have not had a recent event. A good ex-
ample of this is Maacama 2011 CFM, which made the top-10

list in Table 5 and can be seen as the prominent red lineament
in northern California (shown in Fig. 9b).

For faults where elastic-rebound probabilities were com-
puted in both models, the gains in UCERF3 are generally
higher than those in UCERF2. For example, San Andreas
(Coachella) rev had a gain of 1.43 in UCERF2 but now has

Figure 9. Thirty-year M ≥6:7 participation probability and implied gains throughout the region, where fault-based probabilities have
been aggregated onto 0:1° × 0:1° grid cells, and subseismogenic and off-fault ruptures are included (as time-independent sources).
(a) Branch-averaged probabilities for the UCERF3 time-dependent model. (b) Probability gains implied by UCERF3, obtained by dividing
the time-dependent probability averages by those obtained from the time-independent (Poisson) model branches. (c) Same as (a) but for
UCERF2. (d) Same as (b) but for UCERF2.

530 E. H. Field et al.



a gain of 1.86 according to UCERF3. The total weight applied
to elastic-rebound models in UCERF2 was 0.63 (when con-
sidering both the unsegmented branch and the empirical
model option), whereas the total weight for elastic-rebound
branches in UCERF3 is 0.80 (Table 1). Were we to reduce the
UCERF3 value to that applied in UCERF2, the San Andreas
(Coachella) rev gain would be 1.46, which is very close to the
UCERF2 value of 1.43. Therefore, the higher gains on
UCERF3 faults can also be attributed to an effective increase
in the weight applied to the elastic-rebound model.

Figure 10 shows equivalent 30 year participation maps for
M ≥7:7 events, for which conclusions are generally similar to
those drawn for the M ≥6:7 maps (Fig. 9). A much greater
fraction of the region participates in M ≥7:7 events in
UCERF3, compared to UCERF2, but this is a manifestation of
earthquake rate model differences rather than elastic rebound.

Hazard Map Ratios

As noted, each of the metrics presented above has limita-
tions with respect to inferring practical implications. Here, we
address the question of how the time dependence might influ-
ence building codes, which have traditionally considered the
ground motions that have some chance of being exceeded in
50 years, as determined via probabilistic seismic-hazard analy-
sis. The USGS National Seismic Hazard Mapping Program
generates a variety of probabilistic maps for this purpose (e.g.,
Algermissen et al., 1982; Frankel et al., 1996, 2002; Petersen
et al., 2008), and these have been updated recently for official
release in 2014 (Petersen et al., 2014). For California, the new
maps utilize the UCERF3 time-independent (Poisson) model.

Figure 11 compares the UCERF3 and UCERF2 time-
dependent models in terms of the time-dependent gain for
peak ground acceleration (PGA) with a 2% chance of being
exceeded in 50 years (time-dependent maps divided by time-
independent maps). In general, the trends in Figure 11 follow
those seen in the participation probability maps (Figs. 9 and
10), including the differences between UCERF2 and
UCERF3. An obvious exception is in southeast California,
where there is a wide area of gain not seen in the participation
probability maps. This represents the influence of the San
Andreas fault, which dominates the hazard in this region be-
cause the area lacks more local influences. This high gain does
not necessarily reflect a high hazard, however, as the absolute
difference in PGA levels can be quite small and perhaps incon-
sequential from an engineering design perspective. Never-
theless, this reflects the potential long geographical reach of
hazard influences, which are not reflected in the evaluation
metrics presented above. For example, it has been shown that
earthquakes on the San Andreas (Coachella) rev can efficiently
channel long-period ground motions into the greater LA basin
(e.g., Olsen et al., 2006), so a hazard map for such shaking
might show consequential gains in this highly populated area.
This also exemplifies how conclusions will depend on the ex-
act hazard metric. Plots for other ground-motion parameters
can be obtained from sources in Data and Resources.

Sensitivity Tests

Influence of Logic-Tree Branches

For a few metrics, we explore the range of values im-
plied by the 5760 logic-tree branches, and we quantify which
epistemic uncertainties are most influential. We consider
30 yr M ≥6:7 subsection participation probabilities first,
for which branch-averaged values were discussed previously
(and plotted in Fig. 5a). Figure 12 shows the range of proba-
bilities, normalized by the mean on each subsection, implied by
the various logic-tree branches, and including all subsections.
The spread of values is also quantified by the standard deviation
listed next to each histogram, representing how each branch
contributes to the overall epistemic uncertainty. The deforma-
tion models (alternative slip rates) produce the widest range of
values, with the scaling relationships coming in second, and
the probability models coming in third. All of the remaining
branches have considerably less influence, on average, although
the relative influence of each varies significantly by fault.

Figure 13 shows a map view of the relative influence of
each deformation model on 30 yr M ≥6:7 subsection proba-
bilities. For example, the Geologic and Zeng models give
relatively high values on the northern San Andreas fault,
whereas the other two models produce relatively low values
(by definition, the values shown among the four models at a
point on a fault sum to 1.0). Likewise, Figures 14 and 15 show
equivalent influence maps for the scaling-relationship and
probability-model branches, respectively. As expected, the de-
formation models produce the widest range of values overall,
but the relative influence of each branch varies considerably
across the fault system. Plots for the other branches, as well as
for other magnitude thresholds, and for a 5 year forecast, can
be obtained from sources in Data and Resources.

Turning to the two most populated areas of California,
Figures 16 and 17 show branch sensitivities for 30 yr
M ≥6:7 probabilities in the SF and LA regions, respectively.
Here, the histograms have the same total shape for each branch
because there is only one probability, as opposed to a prob-
ability for each subsection in Figure 12. The contribution
from each branch option is plotted with a different color, along
with a vertical bar representing the mean for that branch. The
horizontal distance between the vertical bars therefore indi-
cates overall sensitivity to that logic-tree branch. For SF, the
influences in descending order are (1) total M ≥5 event rate;
(2) probability models; (3) scaling relationships; (4) deforma-
tion models; (5) Mmax off fault; (6) off-fault spatial seis PDF;
(7) slip along rupture models; and (8) fault models.

For LA, the influential logic-tree branches in descending
order are (1) total M ≥5 event rate; (2) probability models;
(3) scaling relationships and off-fault spatial seis PDF (about
equal); (4) deformation models and Mmax off fault (about
equal); and (5) slip along rupture models and fault models
(about equal).

The different logic-tree-branch influences in these re-
gions highlight the spatial variability of such inferences.
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Conclusions also depend on the chosen evaluation metric,
which in this case was 30 yr M ≥6:7 participation probabil-
ities. It is obviously beyond the scope of this article to evalu-
ate every metric of potential interest.

Influence of Historic Open Interval Test

For reasons discussed above, we assumed a historic
open interval based on the year 1875. To quantify sensitivity
of this decision, Figure 18 maps relative 30 yr M ≥6:7

probabilities for three alternative values, based on 1850,
1900, and 2014 (the latter representing zero open interval).
Probabilities obtained for 1850 and 1900 show negligible
differences compared to the epistemic uncertainties shown in
Figures 13, 14, and 15. The differences between 1875 and
2014 are more important, especially for the higher slip-rate
faults, which is why we have chosen to account for the historic
open interval. Accounting for the historic open interval in-
creases probability gains relative to UCERF2.
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Figure 10. Same as Figure 9, but for M ≥7:7 probabilities.

532 E. H. Field et al.



Influence of Different Averaging Approaches

As discussed in Field (2015), there are different ways of
averaging over subsections in computing both the condi-
tional recurrence interval (μcondr ) and average time since last
event for each rupture. The formulation presented above
averages section recurrence intervals in computing μcondr ,
whereas we could alternatively compute this as one over the
average of section rates. Likewise, we could average the date
of the last event on each subsection, rather than averaging the
normalized time since the last event, as specified above.
Extensive testing has been conducted to evaluate the viability
and influence of each option, and the formulation presented
here represents our current preference, although two alterna-
tives remain viable. For UCERF3, the differences are negli-
gible when the date of the last event is known on all fault
sections, with some marginally important difference appear-
ing when accounting for unknown last-event dates. The ap-
proach here gives probabilities that are in between the two
viable alternatives, so adding an equally weighted logic-tree
branch would have relatively little influence on average met-
rics; for example, the biggest difference in M ≥6:7 30 yr
probabilities among all subsections is 0.01, and this value
is just 2% of the difference between minimum and maximum
probabilities. Stated another way, the influence of a branch
for the different averaging methods would be on a par with
that of fault models in Figure 12.

Discussion

The UCERF3 time-dependent forecast appears to be a
reasonable representation of elastic-rebound theory. It implies
reduced probabilities, or low gains, where events have recently
occurred (e.g., North San Andreas, Owens Valley), and
elevated probability gains where faults have a higher normal-
ized time since the last event (e.g., San Andreas [Coachella]
rev, San Andreas [San Bernardino S]). It also produces higher
gains on faults that have short recurrence intervals relative to
the historic open interval (e.g., Maacama 2011 CFM). Perhaps
more surprising is the influence that highly probable faults
have on neighbors with which they tend to corupture (e.g.,
the influence of San Andreas [Coachella] rev on Eureka Peak),
revealing a potentially important consequence of fault inter-
connectivity.

Differences between UCERF3 and UCERF2

In general, differences between UCERF3 and UCERF2
probabilities arise mostly from changes in the long-term
earthquake rate model. For example, Calaveras exhibits the
largest 30 yr M ≥6:7 probability increase among the main
faults (a factor of ∼3), only about a third of which can be at-
tributed to time-dependent-model differences. The rest is due
to increased average slip rate and a change in the shape of the
long-term magnitude–frequency distribution. In UCERF2, the
Calaveras fault was restricted to mostly M ≤6:5 ruptures,
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Figure 11. Time-dependent gain maps for the peak ground acceleration that has a 2% chance of being exceeded in 50 years, obtained by
dividing time-dependent maps by time-independent maps (averaged over all relevant logic-tree branches in both UCERF2 and UCERF3).
The ground-motion prediction equations utilized are the same as those applied in the 2014 update of the U.S. Geological Survey National
Seismic Hazard Maps (Petersen et al., 2014).
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whereas the inclusion of multifault ruptures in UCERF3 has
increased the rate of M ≥6:7 events.

The addition of multifault ruptures has had the opposite
effect on M ≥6:7 probabilities for the San Jacinto fault,
which exhibits the largest decrease among the main faults
(about a factor of 3). Here, multifault ruptures have increased
the rate of M ≥7:7 earthquakes, effectively stealing moment
rate away from smaller sized events, which has lowered the
probability of M ≥6:7 events. Also influential is a drop in
average slip rate and a lower probability gain. Finally, 30 yr
probabilities for M ≥6:7 earthquakes increased on both the
North San Andreas and Garlock main faults, simply because
the UCERF2 segments were too long to produce an adequate
set of such shorter-length events.

Statewide, event probabilities remain largely unchanged
between UCERF2 and UCERF3, except for an increase at
M ≥8:0, due primarily to the inclusion of multifault ruptures
in the UCERF3 earthquake rate model (including full San
Andreas fault ruptures). The same goes for the San Francisco
region, where the inclusion of multifault ruptures has in-
creased M ≥7:5 probabilities by 60%. Large event probabil-
ities have also increased in the LA area (e.g., by a factor of
∼2:5 at M ≥8), but they have also decreased by up to 30%

between M 6.4 and 7.5. These changes reflect not only the
inclusion of multifault ruptures, but also the deliberate sup-
pression of M ∼ 6:7 events, via the UCERF3 inversion, to
avoid UCERF2’s overprediction of such events.

These examples highlight the range of factors influenc-
ing UCERF2 to UCERF3 probability changes, with most
being related to the long-term earthquake rate model. Stated
another way, most of the differences between UCERF3 and
UCERF2 are greater than the range of probability gains im-
plied by each model. Furthermore, most of the differences
are small compared to overall epistemic uncertainties, which
have increased significantly in UCERF3. The above exam-
ples also demonstrate that focusing on any single evaluation
metric, likeM ≥6:7 probabilities, can be misleading in terms
of potential hazard implications.

With respect to time-dependent-model differences, the
biggest influences are accounting for the historic open inter-
val in UCERF3, which only serves to increase probabilities
relative to Poisson, and an effective increase in the weight
applied to elastic-rebound models. As noted above, this
weight was 0.63 in UCERF2, with the rest going into the
Poisson and empirical models, whereas the total weight on
elastic rebound in UCERF3 is 0.80. This 27% weight
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Figure 12. The influence of each logic-tree branch (Fig. 3) on 30 yrM ≥6:7 subsection probabilities. For example, the upper left histogram
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increase, together with the influence of the historic open in-
terval, explains why the UCERF3 gain map has more red
areas than that of UCERF2 (Fig. 9).

Influence of Logic-Tree Branches

For all subsections taken together, the alternative defor-
mation models (slip rates) produce the widest range of prob-
abilities, with the scaling relationships coming in second,
and the probability models coming in third. The relative in-

fluence of logic-tree branches varies significantly by fault
and by region. For example, the total, regional M ≥5 event
rate has the largest influence onM ≥6:7 probabilities in both
the SF and LA regions, with probability models coming in
second and scaling relationships coming in third. Apparently
slip rates are relatively well resolved in these areas, or trade-
offs between neighboring faults are canceling out.

Again, such inferences depend on the evaluation metric.
For example, deformation models are presumably more influ-
ential than total M ≥5 event rates at higher magnitudes (e.g.,
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Figure 13. Average 30 yr M ≥6:7 subsection probabilities for each deformation model branch, separately, normalized by the overall
mean on each subsection. In other words, summing values across the four different maps equals 1.0, revealing the overall influence of each
branch (assuming each is weighted equally here). Such plots for other logic-tree branches are available from sources in Data and Resources.
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536 E. H. Field et al.



M >7:7). Evaluations of logic-tree sensitivity, as well as
influences on UCERF2 to UCERF3 differences, need to be
made on a case-by-case basis. The conclusions will certainly
differ depending on whether one is producing statewide port-
folio loss estimates, designing a single family dwelling in
Sacramento, retrofitting the San Francisco Bay bridge, or
putting a pipeline across the San Andreas fault. We obviously
cannot quantify branch influences for every situation here, but
we do provide computer code that can aid such case-by-case
assessments (see Data and Resources).

The weights assigned to logic-tree branches might also
warrant adjustment depending on study details. For example,
preliminary implementations of our spatiotemporal cluster-
ing model imply incompatibility with a Poisson model, as
mentioned in the Introduction, so probability model weights
might need to be adjusted in an operational earthquake fore-
cast. Other situations in which adjustments might be war-
ranted, including site-specific studies, are discussed in the
UCERF3-TI report with respect to the time-independent
model.
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Figure 15. Same as Figure 13, but for the different probability model options. Equivalent plots for other logic-tree branches are available
from sources in Data and Resources.
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Model Testability

Our model assumes elastic-rebound effects exist in the
real earthquake system, because the infrequency of supra-
seismogenic earthquakes has exacerbated definitive tests.
Fortunately, the methodology as formulated here is testable.
It predicts that the recurrence interval of each supraseismo-
genic earthquake can be estimated by averaging the long-
term recurrence intervals along the rupture surface and that
event-to-event deviations from this expected value can be
represented with a classic renewal model. There is no need
to wait for multiple events along the same stretch of fault. As
long as estimates of long-term recurrence intervals exist
along the observed rupture, any large earthquake can poten-
tially represent a data point in testing the model.

This test also avoids challenges associated with inferring
recurrence-interval distributions from paleoseismic data. As
discussed by Field (2015), there is no reason to expect the

distribution at a point on a fault (e.g., as seen in a trench) to
look like a classic renewal model, unless one assumes strict
segmentation. This and other interpretive issues, such as
missed events, will therefore need to be considered when
inferring elastic-rebound predictability from paleoseis-
mic data.

Of course we must continue to rely on paleoseismology
to provide reliable mean recurrence-interval estimates, as
these constrain the earthquake rate model, which then gets
used to define the expected recurrence intervals in our elas-
tic-rebound model. However, we may need to avoid assump-
tions about the underlying distribution, as addressed by
Parsons (2012). The point here is that deeper interpretations
of paleoseismic data are not required to test our time-depen-
dent model (although they would not hurt). Collecting an ad-
equate observational dataset may not be trivial, but it is
theoretically feasible.
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538 E. H. Field et al.



Model Limitations and Future Improvements

All forecast models represent an approximation of the
system. Several limitations of the time-independent model
are discussed in the UCERF3-TI report, so we focus here
on those associated with the time-dependent probability mod-
els. In addition to assuming that elastic-rebound effects exist in
nature, we also effectively assume that other time-dependent
processes are negligible. We know for certain that spatiotem-
poral effects exist in the form of aftershocks and otherwise
triggered events, which we hope to add to UCERF3 soon.
However, and as mentioned in the Introduction, there may be
other processes as well, such as supercycles, mode switching,
or whatever might be causing the rate changes that motivated
the empirical model of previous WGCEPs (assuming they are
not an artifact of something else).

There are also potential issues with respect to our elastic-
rebound implementation. The high probability gain on the
Maacama 2011 CFM fault section exemplifies one potential
problem. As noted, this high gain stems from the historic open
interval being a significant fraction of the long-term recurrence
interval along the fault. However, it is completely unaffected
by the great 1906 event on the neighboring San Andreas fault,

and it is possible that the latter could have cast a probabilistic
shadow (e.g., Harris and Simpson, 1998) on this and other
neighboring faults. In fact, such shadowing effects may also
be underestimated by the back-slip model assumptions
utilized in current physics-based simulators, which otherwise
include stress transfer effects (e.g., Tullis et al., 2012).

Another issue, discussed in the Methodology section
above, is that our model gives a zero probability for supra-
seismogenic ruptures that completely overlap the surface of a
recent, larger event. Although observations of such events
are at least rare, their occurrence seems feasible from a dy-
namic rupture perspective. Including the Poisson branch was
our only means of hedging on this question. This is not to say
our model has zero overlap with recently ruptured fault areas,
as the rupture probability effectively declines gradually as
the degree of overlap increases. In fact, when a branching
fault is encountered, our model will give a higher probability
for rupturing the option with a higher normalized time since
the last event, which effectively conforms to the explanation
given by Schwartz et al. (2012) on why the 2002 Denali
earthquake branched onto the Totschunda fault.

As touched on by Field (2015), details of the elastic-
rebound implementation, including assumed aperiodicity,
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Figure 17. Same as Figure 16, but for the Los Angeles (LA) region plotted in Figure 1. (Models are referenced in full in Figure 3.)
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have a significant influence on the degree of overlap among
adjacent ruptures. Furthermore, this overlap will only in-
crease when spatiotemporal clustering is added, because
aftershock statistics will have a preference for triggering a
large event on adjacent fault sections, rather than triggering
a more distant fault. Having better observational constraints
on spatial overlap could therefore provide a powerful means
of testing all types of forecast models.

The UCERF3-TI report discusses a number of ways the
logic-tree branches could be expanded with respect to the
time-independent model. Possible expansions with respect to
the UCERF3 probability models include: (1) alternative re-
newal models (besides BPT); (2) alternative interpretations

of date-of-last event data, especially with respect to the lat-
eral extent of events (which are currently minimized with
respect to paleoseismic constraints); (3) alternative historic
open interval assumptions, including region- or fault-specific
values; and (4) alternative approaches for averaging renewal
model parameters across the subsections utilized by each
rupture. Sensitivity tests suggest that adding these branches
would produce only a minor influence on results (e.g., well
below 10%), at least for most metrics and in most areas. We
therefore believe it will be more productive to address other
shortcomings, such as the lack of spatiotemporal clustering.

Adding more logic-tree branches will only serve to
expand the epistemic uncertainties, which have already
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Figure 18. Ratio of 30 yrM ≥6:7 subsection probabilities obtained for alternative historic open intervals, divided by those obtained for
1875 (the value assumed in UCERF3): (a) 1850; (b) 1900; and (c) 2014 (zero historic open interval since the forecast starts at 2014).
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increased considerably between UCERF2 and UCERF3.
Unfortunately, this means we have yet to reach the tipping
point where incremental model improvements start reducing
epistemic uncertainties. That we are making this conclusion
for one of the most data-rich and highly scrutinized areas on
Earth is telling with respect to the scientific maturity of earth-
quake forecasting. It is also disconcerting with respect to the
implied unknowns in other regions.

A final consideration is the 10% overprediction of long-
term rates implied by Monte Carlo simulations, as discussed
in the Methodology section. This bias is relatively small
compared to both the overall probability gains and epistemic
uncertainties but could nevertheless be corrected by lowering
all probabilities by 10%. For example, correcting the 30 yr
M ≥6:7 probabilities on the San Andreas (Coachella) rev
fault section would produce the following (corrected values
in parentheses):

• mean: 0.27 (0.24)
• minimum: 0.07 (0.06)
• maximum: 0.60 (0.54)
• gain: 1.86 (1.67)

The difference here between corrected and uncorrected mean
values (0.03) is only about 6% of the difference between the
minimum and maximum values. Given this relatively small
influence, we have chosen not to make such corrections here.
We also note that previous models suffer such biases as well;
they just were not recognized at the time. Users are certainly
free to make their own judgments with respect to these cor-
rections. However, if one deems the differences important,
then surely consideration of the full logic tree would be in
order, as applying mean values might not be appropriate
given overall uncertainties.

Conclusions

Relaxing segmentation and including multifault ruptures
presented significant challenges with respect to representing
elastic-rebound theory in UCERF3. This led to the development
of a new methodology, which is more conceptually self-consis-
tent than the previous approach and less biased in terms of
reproducing long-term rates in Monte Carlo simulations. The
methodology is also consistent with the elastic-rebound predict-
ability seen in physics-based simulators, it can accommodate
magnitude-dependent aperiodicity, and it can account for the
historic open interval on faults that lack date-of-last-event
data, all of which represent advantages over the previous ap-
proach. The model is also inherently more testable.

The new methodology is far from perfect, however. It
assumes elastic rebound dominates other known and sus-
pected processes that are not included in the model. There
are also a number of ways the logic tree could be expanded
to represent other epistemic uncertainties. Nevertheless, we
believe the model currently represents the best available sci-
ence with respect to quantifying the potential influence of
elastic rebound. Full implications of the model will need

to be studied on a case-by-case basis, and such analyses
might warrant adjustment of the logic-tree branch weights
assigned here. Given the time-dependent nature of the model,
results should also be recomputed with an alternative start
time if appropriate and as new constraints are obtained for
the time since last event on faults.

Data and Resources

Higher-resolution versions of figures, results for other
evaluation metrics, and additional files needed to implement
the model (e.g., probability of each rupture) are available at
http://www.WGCEP.org/UCERF3 (last accessed Janu-
ary 2015).

All calculations were made using OpenSHA (http://
www.OpenSHA.org; last accessed October 2014; Field et al.,
2003), which in turn utilizes Generic Mapping Tools (http://
gmt.soest.hawaii.edu; last accessed January 2012) and JFree-
Chart (http://www.jfree.org/jfreechart/; last accessed March
2012) for making plots.
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